
Spectral Navier Stokes with UPC++ and OpenMP
Samuel Olivier

Background

• Spectrally solve the Navier Stokes Equations:
∂~V

∂t
= ~V × ~ω −∇Π + ν∇2~V

∇ · ~V = 0
where

~ω = ∇× ~V ,Π = 1
2
V 2 + P

ρ
in a triply-periodic box
•Transform ~V , Π, and ~ω to Fourier space using a 3D Fast Fourier Transform
(FFT)

~V =
∑
m

∑
n

∑
p
Ṽ (m,n, p)eimxeinyeipz

• Laplacian example:
∇2Vi =

∑
m

∑
n

∑
p
−
(
m2 + n2 + p2

)
Ṽi(m,n, p)eimxeinyeipz

•To avoid expense of convolution in Fourier space, cross product is done in
physical space
•Orthoganlity of Fourier modes ⇒ equations decouple in m,n, p.
•Adams Bashforth/Crank Nicholson Fractional Step Method

∇2G̃ = ∇ ·
(
Ṽ n + ∆t

2
(
3Ṽ n × ω̃n − Ṽ n−1 × ω̃n−1

)
+ ν∆t

2
∇2Ṽ n

)

Ṽ n+1/2 = Ṽ n + ∆t
2
(
3Ṽ n × ω̃n − Ṽ n−1 × ω̃n−1

)
−∇G̃

Ṽ n+1 = Ṽ n+1/2 + ν∆t
2

(
∇2Ṽ n+1 +∇2Ṽ n

)
where

G̃ = ∆t
2
(
3Π̃n − Π̃n−1

)
•Parallelize by distributing across UPC++ ranks
•Array operations (gradient, divergence, addition, subtraction) are all
element-wise ⇒ embarassingly parallel
•Communication only required in global transpose of 3D FFT

Parallel FFT

• Store variables as distributed arrays (distributed in z)
•Apply serial FFT in each direction using 1D FFTW
• x, y are locally owned but z is distributed across UPC++ ranks
•Need all data in z direction to be local ⇒ Global Transpose (switch to data
being local in x, z and distributed in y)
•Do all FFT’s in y, send rows while doing FFT’s in x
•Pencils: send a row at a time after finishing each serial FFT in x
• Slabs: transform a group of rows and send an x-y plane
•Use UPC++ one-sided communication (rput) to avoid synchronization
•Operate on local data in parallel with OpenMP
•Do multiple 1D FFT’s in parallel
•Pencils sends messages from OpenMP parallel region (caught issue with
UPC++ on Cori)

Results

0 5 10 15 20 25 30

n

0

10

20

30

40

50

60

S
tr

on
g

S
ca

lin
g

E
ffi

ci
en

cy

UPC++

OpenMP (Slabs)

OpenMP (Pencils)

Fig. 1: Isolated strong scaling for UPC++ and
OpenMP.

0 5 10 15 20 25 30

OpenMP Threads/Node

0.05

0.10

0.15

0.20

S
tr

on
g

S
ca

lin
g

E
ffi

ci
en

cy

Pencils

Slabs

Fig. 2: Combined strong scaling UPC++ and OpenMP.

0 10 20 30 40 50 60

Number of Processors

20

30

40

50

60

W
ea

k
S

ca
lin

g
E

ffi
ci

en
cy

Fig. 3: Weak scaling for 1, 8, 64 processors.

cross product

34.51
divergence

11.01

curl 8.19

vector laplacian

6.24

gradient

5.80

laplacian inverse

2.27

array math (+,-,etc.)

31.96

Fig. 4: Timing breakdown of kernels.

Fig. 5: Velocity (top), vorticity (middle), and pressure (bottom) at four time slices. Mesh size 643.

Conclusions

• Inter opting with OpenMP degrades performance
•Fastest with all UPC++ ranks instead of balance between OpenMP and
UPC++
•OpenMP strong scaled poorly
•May be from data contention between threads operating on same data in 1D
FFT’s
•Unknown slow performance in embarrassingly parallel array operations

•Pencils and slabs performed nearly identically
•Poor weak scaling expected from all-to-all messages in FFT global transpose
•Additional transpose to make data contiguous in z did not improve performance

Future Work

•Test on more nodes
• Slower messages across the network may make inter opting with OpenMP more
favorable
•Might expose a larger difference between pencils and slabs
• Investigate numerical issue with high resolution meshes (N > 1283)
• Implement planes in global transpose
• Investigate OpenMP scaling issue

References

[1] M. Frigo, “A fast fourier transform compiler,” SIGPLAN Not., vol. 34,
pp. 169–180, May 1999.

[2] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing bandwidth
limited problems using one-sided communication and overlap,” in Proceedings
of the 20th International Conference on Parallel and Distributed
Processing, IPDPS’06, (Washington, DC, USA), pp. 84–84, IEEE Computer
Society, 2006.

[3] A. Chan, P. Balaji, W. Gropp, and R. Thakur, “Communication analysis of
parallel 3d fft for flat cartesian meshes on large blue gene systems,” in
Proceedings of the 15th International Conference on High Performance
Computing, HiPC’08, (Berlin, Heidelberg), pp. 350–364, Springer-Verlag, 2008.

[4] Bachan J, Baden S, Bonachea D, and Hargrove P, “UPC++ specification v1.0,
draft 6,” Lawrence Berkeley National Laboratory Tech Report, 2018.

[5] L. Dagum and R. Menon, “Openmp: An industry-standard api for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, pp. 46–55,
Jan. 1998.

[6] C. Canuto, Spectral Methods in Fluid Dynamics.
Springer-Verlag, 1988.


