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Motivation

• LDRD to investigate solving radiative transfer on curved, high order meshes with
high order finite elements

• Curved meshes introduce non-trivial difficulties (face integration, sweep scheduling,
reentrant faces)

• Iterative convergence rate is slow in optically thick limit
• Goal: design a method that improves iterative convergence while enabling curved
mesh transport

Background

• Mono-energetic, steady state, Boltzman Transport Equation with isotropic
scattering, source:

Ω̂ · ∇ψ + σtψ = σs
4π

∫
4π
ψ dΩ + Q

4π

• SN angular discretization:

Ω̂d · ∇ψd + σtψd = σs
4π

∑
d′
wd′ψd′ +

Q

4π

where ψd = ψ(Ω̂d) and the Ω̂d are the discrete angles in a quadrature rule {Ω̂d, wd}
• Source Iteration: decouple in angle by lagging scattering term:

Ω̂d · ∇ψ`+1
d = σs

4π
φ` + Q

4π
where φ` = ∑

wdψ
`
d

• Convergence rate dependent on amount of scattering ⇒ acceleration required

Variable Eddington Factor Acceleration

• Take angular moments of the transport equation
∇ · ~J + σaφ = Q ,

∇ ·
∫

Ω̂Ω̂ ψ dΩ + σt ~J = 0 ,

where φ =
∫
ψ dΩ, ~J =

∫
Ω̂ ψ dΩ

• Multiply and divide by φ

∇ ·
∫

Ω̂Ω̂ ψ dΩ→ ∇ ·
∫

Ω̂Ω̂ ψ dΩ∫
ψ dΩ︸ ︷︷ ︸

Eddington Tensor=E

φ

• Eddington Equations:
∇ · ~J + σaφ = Q ,

∇ ·Eφ + σt ~J = 0 .
• Transport sweep for ψ`+1/2 to compute E`+1/2

E
`+1/2
ij =

∑ Ω̂iΩ̂j ψ
`+1/2
d wd∑

ψ
`+1/2
d wd

and solve
∇ · ~J + σaφ

`+1 = Q ,

∇ ·E`+1/2φ`+1 + σt ~J = 0 .
for the updated scalar flux, φ`+1

• If not converged, update the SN scattering term and repeat until φ`+1 and φ` converge

Mixed Finite Element Discretization

• Discretize ~J with H1,d elements and φ with L2

~J ≈ ~Jh =
∑

~SiJi , ~Si ⊂ H1,d

φ ≈ φh =
∑

Biφi , Bi ⊂ L2

• Multiply zeroth moment by φ basis function and integrate globally∫
Bi∇ · ~Jh dV +

∫
σaBiφh dv =

∫
BiQ dV

• Multiply first moment by ~J basis function and integrate globally (with Gauss Divergence
Theorem to offload gradient of L2)∫

φhE : ~Si dV −
∫
σt~Si · ~Jh dV =

∫
∂V

En̂ · ~SiφBC
h dS

• Leads to non-symmetric Saddle Point system:[
Ma G
H −Mt

] [
φ
J

]
=

[
Q
B

]
where

Ma,ij =
∫
σaBiBj dV , Gij =

∫
Bi∇ · ~Sj dV ,

Hij =
∫
BjE : ∇~Si dV , Mt,ij =

∫
σt~Si · ~Sj dV

Q
i

=
∫
BiQ dV , Bi =

∫
∂V En̂ · ~SiφBC

h dS

Schur Complement Solve

• Ma is block diagonal ⇒ easily inverted!
Maφ + GJ = Q

⇒ φ = M−1
a

[
Q−GJ

]
Hφ−MtJ = B

⇒ −
[
HM−1

a G + Mt

]
︸ ︷︷ ︸
Schur Complement=S

J = B −HM−1
a Q

• Assemble and solve at every iteration ⇒ want iterative solver
• S is non-symmetric and has been difficult to solve iteratively (need a preconditioner)

Results
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Fig. 1: Method of Manufactured Solutions error compared
to reference third and fourth order lines.
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VEF performs as well as traditional methods
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Fig. 2: Number of iterations required for convergence to
10−8 for a range of scattering ratios.

Two Mesh Approach

• Alleviate curved mesh issues by sweeping on simpler, low order mesh. VEF on
original high order hydro mesh

• Map E on linear mesh to curved mesh and scattering term on curved mesh to linear
mesh

HO curved mesh to LO straight-edged mesh

Fig. 3: Depiction of DOFs in the curved and straightened/refined meshes.

Conclusions and Future Work

• Developed an arbitrary order Mixed FEM VEF discretization
• Showed that VEF accelerates source iteration
• Future Work:

• Design a preconditioner to iteratively solve the Schur Complement system
• Investigate stability of transport on straightened mesh, VEF on curved mesh
• Investigate using VEF as a preconditioner (VEFSA?)
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