Variable Eddington Factor Acceleration of Thermal Radiative Transfer on Curved Meshes

HEDP End of Summer Presentation

Samuel S. Olivier1
Mentors: Peter Maginot2, Terry Haut2
August 15, 2018

1University of California, Berkeley
2Lawrence Livermore National Laboratory
Motivation

- Thermal Radiative Transfer: describes conservation and transfer of energy between photons and matter
- 6+1 dimensional phase space ⇒ dominates memory and runtime
- LDRD investigating high order FEM TRT on curved meshes for coupling to BLAST hydrodynamics code
- Goal: develop an acceleration scheme to improve iterative convergence

\[\psi(\vec{x}, \hat{\Omega}, \nu, t) \]

3D hydro grid 2D angular grid

1D time dependence 1D energy grid
Linear Transport Equation

- Steady state, one-group, Linear Boltzmann Equation with isotropic scattering and source:

\[\hat{\Omega} \cdot \nabla \psi + \sigma_t \psi = \frac{\sigma_s}{4\pi} \int \psi \, d\Omega + \frac{Q}{4\pi} \]

- Discrete Ordinates (S_N) angular discretization

\[\hat{\Omega} \cdot \nabla \psi_d + \sigma_t \psi_d = \frac{\sigma_s}{4\pi} \sum w_{d'} \psi_{d'} + \frac{Q}{4\pi}, \quad d = 1, 2, \ldots, N_{\text{angles}} \]

where \(\psi_d(x) = \psi(x, \hat{\Omega}_d) \)

- \(N_{\text{angles}} \) coupled equations \(\Rightarrow \) prohibitively expensive to solve
Source Iteration decouples in angle

- Decouple by lagging the scattering term

\[\hat{\Omega} \cdot \nabla \psi_{d}^{\ell+1} + \sigma_{t} \psi_{d}^{\ell+1} = \frac{\sigma_{s}}{4\pi} \sum w_{d'} \psi_{d'}^{\ell} + \frac{Q}{4\pi} \]

Known from previous iteration

\[\rightarrow N_{\text{angles}} \] independent equations but need to solve iteratively

- Slow convergence in highly scattering systems

Need a preconditioner/accelerator for practical applications
Variable Eddington Factor Equations

- Take first two angular moments of transport equation:

\[\nabla \cdot \vec{J} + \sigma_a \phi = Q \]

\[\nabla \cdot (E \phi) + \sigma_t \vec{J} = 0 \]

where

\[\phi = \int \psi \, d\Omega, \quad \vec{J} = \int \hat{\Omega} \, \psi \, d\Omega \]

and

\[E = \frac{\int \hat{\Omega} \otimes \hat{\Omega} \, \psi \, d\Omega}{\int \psi \, d\Omega} \]

- In 3D: 4 equations for 13 unknowns
- More angular moments \(\rightarrow\) more unknowns
- Need \(\psi\) (the solution) to have closure
- Historically: invent a closure similar to flux limited diffusion
Close with transport information from previous iteration

- Solve
 \[\hat{\Omega} \cdot \nabla \psi_{\ell+1/2} + \sigma_t \psi_{\ell+1/2} = \frac{\sigma_s}{4\pi} \phi^\ell + \frac{Q}{4\pi} \]
 for \(\psi_{\ell+1/2} \)

- Compute Eddington tensor:
 \[E_{ij}^{\ell+1/2} = \frac{\sum w_d \hat{\Omega}_i^{(d)} \hat{\Omega}_j^{(d)} \psi_d^{\ell+1/2}}{\sum w_d \psi_d^{\ell+1/2}} \]

- Solve VEF equations for updated scalar flux \(\phi^{\ell+1} \)
 \[\nabla \cdot \vec{J}^{\ell+1} + \sigma_a \phi^{\ell+1} = Q, \]
 \[\nabla \cdot \left(E^{\ell+1/2} \phi^{\ell+1} \right) + \sigma_t \vec{J}^{\ell+1} = 0. \]

- Update scattering term with VEF solution

- Stop if \(\| \phi^{\ell+1} - \phi^\ell \| < tol \)
VEF Accelerates Source Iteration

- Eddington tensor converges faster than the scalar flux
 - Angular flux weighted average of $\hat{\Omega} \otimes \hat{\Omega}$ depends on angular shape not magnitude
 - ψ converges quickly in angular shape
- VEF compensates lagging of scattering term in Source Iteration
Mixed Finite Element Discretization

VEF discretization does not need to match transport!

Mixed Finite Element:

- \(\vec{J} \) with \(H^{1,d} \) finite elements (vector lagrange)
- \(\phi \) with \(L^2 \) finite elements (discontinuous)

Multiply zeroth moment by \(\phi \) basis function, \(u \), and integrate:

\[
\int u \nabla \cdot \vec{J}_h \, dV + \int \sigma_a u \phi_h \, dV = \int uQ \, dV
\]

Multiply first moment by \(\vec{J} \) basis function, \(\vec{v} \), and integrate tensor term by parts:

\[
\int \phi_h E : \nabla \vec{v} \, dV - \int \sigma_t \vec{v} \cdot \vec{J}_{h} \, dV = \int_{\partial\Omega} E \hat{n} \cdot \vec{v} \phi_{h}^{BC} \, dS
\]

\[\nabla \cdot \vec{J} + \sigma_a \phi = Q \]

\[\nabla \cdot (E \phi) + \sigma_t \vec{J} = 0\]
MFEM leads to non-symmetric Saddle Point problem

Matrix form:

\[
\begin{bmatrix}
M_a & G \\
H & -M_t
\end{bmatrix}
\begin{bmatrix}
\phi \\
J
\end{bmatrix}
=
\begin{bmatrix}
Q \\
B
\end{bmatrix}
\]

where

\[
M_{a,ij} = \int \sigma_a u_i u_j \, dV ,
\]
\[
G_{ij} = \int u_i \nabla \cdot \vec{v}_j \, dV ,
\]
\[
H_{ij} = \int u_j \mathbf{E} : \nabla \vec{v}_i \, dV ,
\]
\[
M_{t,ij} = \int \sigma_t \vec{v}_i \cdot \vec{v}_j \, dV
\]
\[
Q_i = \int u_i Q \, dV ,
\]
\[
B_i = \int_{\partial V} \mathbf{E} \hat{n} \cdot \vec{v}_i \phi_{h}^{BC} \, dS
\]

\(H \neq G^T \) due to presence of Eddington Tensor \(\Rightarrow \) non-symmetric Saddle Point Problem
Solve with Schur Complement

- M_a is block diagonal \Rightarrow easily inverted!

\[M_a \phi + G J = Q \]

$\Rightarrow \phi = M_a^{-1} [Q - G J]$

\[H \phi - M_t J = B \]

$\Rightarrow - \left[H M_a^{-1} G + M_t \right] J = B - H M_a^{-1} Q$

- Assemble and solve at every iteration \Rightarrow want iterative solver

- Schur Complement is non-symmetric and has been difficult to solve iteratively (need to find a preconditioner)
Method of Manufactured Solutions Test Problem

Geometry: 2D box $[0, 1] \times [0, 1]$

$s_\tau = 5 \text{ cm}^{-1} \Rightarrow 5 \text{ mfp thick}$

Set the fixed source to force the solution to “chopped sines”

$$\phi = \sin \left(\pi \frac{x + \alpha}{1 + 2\alpha} \right) \sin \left(\pi \frac{y + \alpha}{1 + 2\alpha} \right)$$

$\alpha \neq 0$ allows testing inflow boundary conditions

Provides known solution to compare numerical solution to S_4 angular quadrature
VEF Accelerates Source Iteration

Eddington factors converge faster than ϕ

![Graph showing convergence](image)

Fig. 1: Convergence for unaccelerated Source Iteration.
VEF Accelerates Source Iteration

Fig. 1: Convergence for unaccelerated Source Iteration.

VEF transfers fast rate of convergence to ϕ

Fig. 2: Convergence for VEF acceleration.
VEF Accelerates Source Iteration

Eddington factors converge faster than ϕ

VEF transfers fast rate of convergence to ϕ

Fig. 1: Convergence for unaccelerated Source Iteration.

Fig. 2: Convergence for VEF acceleration.
VEF algorithm maintains order of accuracy.

\[
\begin{align*}
10^{-1} &\times 10^{-2} & 4 \times 10^{-2} & 6 \times 10^{-2} & 2 \times 10^{-1} \\
\hbar & 10^{-7} & 10^{-6} & 10^{-5} & 10^{-4} \\
L_2 \text{ Error} \quad p = 1 & & & & \ \\
VEF & & & & \ \\
DSA & & & & \\
\end{align*}
\]
VEF accelerates as well as traditional methods.
Conclusions

- Developed a mixed finite element discretization for Eddington equations + a robust Saddle Point solver
- Implemented VEF acceleration in LDRD code
- Verified order of accuracy and acceleration properties

Thanks to my mentors Peter Maginot and Terry Haut.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.