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Motivation

• Thermal Radiative Transfer: describes conservation and transfer
of energy between photons and matter

• 6+1 dimensional phase space ⇒ dominates memory and runtime
• LDRD investigating high order FEM TRT on curved meshes for

coupling to BLAST hydrodynamics code
• Goal: develop an acceleration scheme to improve iterative

convergence
Materials and quadratic curved mesh 

in an ICF capsule simulation using 
BLAST
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Linear Transport Equation

• Steady state, one-group, Linear Boltzmann Equation with isotropic
scattering and source:

Ω̂ · ∇ψ + σtψ = σs
4π

∫
ψ dΩ + Q

4π

Streaming Collision Scattering Source

• Discrete Ordinates (SN) angular discretization

Ω̂ · ∇ψd + σtψd = σs
4π
∑

wd′ψd′ + Q

4π , d = 1, 2, . . . , Nangles

where ψd(x) = ψ(x, Ω̂d)
• Nangles coupled equations ⇒ prohibitively expensive to solve
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Source Iteration decouples in angle

• Decouple by lagging the scattering term

Ω̂ · ∇ψ`+1
d + σtψ

`+1
d = σs

4π
∑

wd′ψ`d′ + Q

4π
Known from previous iteration

→ Nangles independent equations but need to
solve iteratively

• Slow convergence in highly scattering systems

initial guess
for ψ0

transport
sweep

for ψ`+1

converged?

use φ`+1

as final
solution

construct
scattering

source

Need a preconditioner/accelerator for practical applications
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Variable Eddington Factor Equations

• Take first two angular moments of transport equation:

∇ · ~J + σaφ = Q

∇ · (Eφ) + σt ~J = 0

where
φ =

∫
ψ dΩ , ~J =

∫
Ω̂ ψ dΩ

and

E =
∫

Ω̂⊗ Ω̂ ψ dΩ∫
ψ dΩ

• In 3D: 4 equations for 13 unknowns
• More angular moments → more unknowns
• Need ψ (the solution) to have closure
• Historically: invent a closure similar to flux limited diffusion
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Close with transport information from previous iteration

• Solve

Ω̂ · ∇ψ`+1/2 + σtψ
`+1/2 = σs

4πφ
` + Q

4π

for ψ`+1/2

• Compute Eddington tensor:

E
`+1/2
ij =

∑
wdΩ̂(d)

i Ω̂(d)
j ψ

`+1/2
d∑

wdψ
`+1/2
d

• Solve VEF equations for updated scalar flux φ`+1

∇ · ~J`+1 + σaφ
`+1 = Q ,

∇ ·
(

E`+1/2φ`+1
)

+ σt ~J
`+1 = 0 .

• Update scattering term with VEF solution
• Stop if ‖φ`+1 − φ`‖ < tol

initial guess
for φ0

transport
sweep for
ψ`+1/2

compute
Eddington

tensor

solve VEF
for φ`+1

converged?

use φ`+1

as final
solution

construct
scattering

source

– DG
– MFEM
– Overlap
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VEF Accelerates Source Iteration

• Eddington tensor converges faster than the scalar flux
• Angular flux weighted average of Ω̂⊗ Ω̂ ⇒ depends on angular

shape not magnitude
• ψ converges quickly in angular shape

• VEF compensates lagging of scattering term in Source Iteration
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Mixed Finite Element Discretization

VEF discretization does not need to match transport!

Mixed Finite Element:

• ~J with H1,d finite elements (vector lagrange)
• φ with L2 finite elements (discontinuous)

Multiply zeroth moment by φ basis function, u, and integrate:∫
u∇ · ~Jh dV +

∫
σauφh dV =

∫
uQdV

Multiply first moment by ~J basis function, ~v, and integrate tensor term
by parts: ∫

φhE : ∇~v dV −
∫
σt~v · ~Jh dV =

∫
∂V

En̂ · ~vφBC
h dS

∇ · ~J + σaφ = Q

∇ · (Eφ) + σt
~J = 0
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MFEM leads to non-symmetric Saddle Point problem

Matrix form: [
Ma G
H −Mt

][
φ

J

]
=
[
Q

B

]

where
Ma,ij =

∫
σauiuj dV , Gij =

∫
ui∇ · ~vj dV ,

Hij =
∫
ujE : ∇~vi dV , Mt,ij =

∫
σt~vi · ~vj dV

Q
i

=
∫
uiQdV , Bi =

∫
∂V

En̂ · ~viφBC
h dS

H 6= GT due to presence of Eddington Tensor ⇒ non-symmetric Saddle
Point Problem
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Solve with Schur Complement

• Ma is block diagonal ⇒ easily inverted!

Maφ+ GJ = Q

⇒ φ = M−1
a

[
Q−GJ

]
Hφ−MtJ = B

⇒ −
[
HM−1

a G + Mt

]︸ ︷︷ ︸
Schur Complement=S

J = B −HM−1
a Q

• Assemble and solve at every iteration ⇒ want iterative solver
• Schur Complement is non-symmetric and has been difficult to solve

iteratively (need to find a preconditioner)

[
Ma G
H −Mt

][
φ

J

]
=
[
Q

B

]
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Method of Manufactured Solutions Test Problem

Geometry: 2D box [0, 1]× [0, 1]

σt = 5 cm−1 ⇒ 5 mfp thick

Set the fixed source to force the solution to “chopped sines”

φ = sin
(
π
x+ α

1 + 2α

)
sin
(
π
y + α

1 + 2α

)
α 6= 0 allows testing inflow boundary conditions

Provides known solution to compare numerical solution to

S4 angular quadrature
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VEF Accelerates Source Iteration
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Fig. 1: Convergence for unaccelerated Source Iteration.
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VEF algorithm maintains order of accuracy
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VEF accelerates as well as traditional methods
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Conclusions

• Developed a mixed finite element discretization for Eddington
equations + a robust Saddle Point solver

• Implemented VEF acceleration in LDRD code
• Verified order of accuracy and acceleration properties
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