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e Finite Element Method

e Strong mathematical foundation (weak forms, approximation theory)

= good error analysis

e Unstructured grids = match complex geometries easily

e High Order FEM

e More accurate per unknown (in smooth problems)

e Use fewer more accurate but more expensive elements = less

communication

e Curved meshes = even better for complex geometry

e Standard continuous FEM not stable for hyperbolic PDEs =

Discontinuous Galerkin FEM
e Goal: implement DGFEM for Sy in 1D slab geometry

(1IN
NI

1/15



Linear Transport Equation

e Steady state, one-group, with isotropic
scattering and source:
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Streaming Co|||5|on Scattermg Source

e Discrete Ordinates (Sy) angular discretization

dyg Xs Q
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where g(z) = ¥ (x, 1q)

® Nangles coupled equations = prohibitively large system of equations
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Source lIteration decouples in angle

e Decouple by lagging the scattering term sl s
dwerl for 1110
f+1 S 4
o=+ St = Y T wa +
. . transport
Known from previous iteration —/ sweep

for 1/)“'1

— Nangles independent equations but need to

solve iteratively
5 a construct
e At every iteration, need to solve ConvergedD—| scattering

source

Ha—— d | Sppg =
use q,’)“'l

for every angle as final
solution
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Discontinuous Galerkin Derivation

e Derive for “master” element on £ € [—1, 1]

e Approximate with linear combination of

interpolating, nodal basis functions in each

oo e o e oo
element \
A

e DGFEM procedure:

ww=2wm©,®UM)

Plug in FEM approximation for 1,4
Multiply equation by b;(&)

Integrate over the element

Use integration by parts to get a
boundary term

Apply upwinding to boundary term to

uniquely define the element edges

Map to a “real” element
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Discontinuous Galerkin Derivation (cont.)

e Multiply by a “test” function b;(£) and integrate over the “master”
element ¢ € [—1,1]:

b,
de]/ pabi g d L+ Dibib; d = / b.S d¢
e Integrate by parts:
db;
[kabivha]© +Z¢dj/ —Hd “b; + $ibib; A€ = / b; S d¢

e Note
[pabibal ) = nabi(1)va(1) = pabi(=1)va(~1)
e How to evaluate ¢4(£1)?

\\—> doubly defined at element edges
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Use upwinding to uniquely define the edges

e Upwinding = search backward along particle path

g > 0: 1/)(1(*1) = U)ina 1/)11 +1 Zb +1 77/)(1_]

pa <0 q( Zb paj, wa(+1) = Pin

where i, is incoming flux known from the boundary condition or an
upwind element

— Hd
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Map to physical space

e Convert master to physical space with isoparametric transformation
dzx db;
z(8) = Eijbxs)xi, JE) =g = Z &

where x; are the node locations in physical space
e Can integrate any function of x in "reference” space & € [—1, 1] with

1
/ () ) dg
e Evaluate numerically with Gauss Quadrature
[z()] "
fo—eo— 4 o—o— 4
-1 +1 Z; Ti+1
v
z(§)
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Can rewrite in matrix form:

[11aG + Mg =S+ B,

where
Yagbi| = [l %b;ds,  pa>0 1
Gij = St ) S My, = [ b J(€) de,
—Va,jbi — 2 SEbidE, e <0
£=—1
H(ﬂ/Jian: Hd > 0
B, = ¢=-1 , S, = [, 0:SJ(€)de
—UdPinV; y pa <0
£=+1

Matrices are (p+ 1) x (p + 1)
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DGFEM Sweeps

e Start with v;, = known boundary condition

e Solve for the 1/;(1 in the first element with:
Ya =[G + M) [§+ é}

by computing the inverse (the system is p+ 1 x p+ 1 = small)

e Compute the incoming angular flux for the next element as the
outgoing from the previous element

Pin = > _b;j(1)ha,;
J

e Repeatedly solve using the outgoing flux from the previous element
until the right boundary is reached

e Same process for negative angles but sweep from right to left
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Implementation Details

e Implemented in C++ (~ 3k LOC!)

e Calls LAPACK for dense linear algebra (matrix inversions, matrix
vector products, etc)

e Uses Lua scripts for parameter input i.e. number of angles, number
of elements, cross sections, source

e CMake build system

e Outputs in Vislt's curve file format for visualization
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Method of Manufactured Solutions

Choose known solution, plug into transport equation, and solve for

the source 1
Yalx) = > sin(mx) = ¢(x) = sin(mx)

1
= Qg = > [am cos(mz) + Xy, sin(mx)]

e Provides analytic solution to compare to

Expect
E = Chrt!

in the L2 norm

e All calculations were S3o
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MMS test verifies arbitrary order of accuracy
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12/15



High order is more accurate per unknown
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Solution for Inhom neous Source

1, <4
Y, =1lcm™!, ¥,=08cm™!, Q=
0, >4
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Conclusions

e Implemented DGFEM Sy solver in C4++
e Verified code with order of accuracy MMS tests

e Showed that high order is more accurate per unknown
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