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Motivation

• Finite Element Method
• Strong mathematical foundation (weak forms, approximation theory)
⇒ good error analysis

• Unstructured grids ⇒ match complex geometries easily
• High Order FEM

• More accurate per unknown (in smooth problems)
• Use fewer more accurate but more expensive elements ⇒ less

communication
• Curved meshes ⇒ even better for complex geometry

• Standard continuous FEM not stable for hyperbolic PDEs ⇒
Discontinuous Galerkin FEM

• Goal: implement DGFEM for SN in 1D slab geometry
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Linear Transport Equation

• Steady state, one-group, Linear Boltzmann Equation with isotropic
scattering and source:

µ
∂ψ

∂x
+ Σtψ = Σs

2

∫
ψ dΩ + Q

2

Streaming Collision Scattering Source

• Discrete Ordinates (SN) angular discretization

µd
dψd
dx + Σtψd = Σs

2
∑

wd′ψd′ + Q

2 , d = 1, 2, . . . , Nangles

where ψd(x) = ψ(x, µd)
• Nangles coupled equations ⇒ prohibitively large system of equations
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Source Iteration decouples in angle

• Decouple by lagging the scattering term

µd
dψ`+1

d

dx + Σtψ`+1
d = Σs

2
∑

wd′ψ`d′ + Q

2
Known from previous iteration

→ Nangles independent equations but need to
solve iteratively

• At every iteration, need to solve

µd
dψd
dx + Σtψd = S

for every angle

initial guess
for ψ0

transport
sweep

for ψ`+1

converged?

use φ`+1

as final
solution

construct
scattering

source
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Discontinuous Galerkin Derivation

• Derive for “master” element on ξ ∈ [−1, 1]
• Approximate with linear combination of

interpolating, nodal basis functions in each
element

ψd(ξ) =
∑
j

ψd,jbj(ξ) , bj ∈ Pk(ξ)

• DGFEM procedure:
• Plug in FEM approximation for ψd
• Multiply equation by bi(ξ)
• Integrate over the element
• Use integration by parts to get a

boundary term
• Apply upwinding to boundary term to

uniquely define the element edges
• Map to a “real” element

−1 +1

−1 +1

−1 +1
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Discontinuous Galerkin Derivation (cont.)

• Multiply by a “test” function bi(ξ) and integrate over the “master”
element ξ ∈ [−1, 1]:∑

j

ψd,j

∫ 1

−1
µdbi

dbj
dx + Σtbibj dξ =

∫ 1

−1
biS dξ

• Integrate by parts:

[µdbiψd]+1
−1 +

∑
j

ψd,j

∫ 1

−1
−µd

dbi
dx bj + Σtbibj dξ =

∫ 1

−1
biS dξ

• Note
[µdbiψd]+1

−1 = µdbi(1)ψd(1)− µdbi(−1)ψd(−1)
• How to evaluate ψd(±1)?

doubly defined at element edges
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Use upwinding to uniquely define the edges

• Upwinding = search backward along particle path

µd > 0 : ψd(−1) = ψin , ψd(+1) =
∑
j

bj(+1)ψd,j

µd < 0 : ψd(−1) =
∑
j

bj(−1)ψd,j , ψd(+1) = ψin

where ψin is incoming flux known from the boundary condition or an
upwind element

µd

µd
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Map to physical space

• Convert master to physical space with isoparametric transformation

x(ξ) =
∑
i

bi(ξ)xi , J(ξ) = dx
dξ =

∑
i

dbi
dξ xi

where xi are the node locations in physical space
• Can integrate any function of x in “reference” space ξ ∈ [−1, 1] with∫ 1

−1
f(x(ξ)) J(ξ) dξ

• Evaluate numerically with Gauss Quadrature

−1 +1 xi xi+1

x(ξ)

[x(ξ)]−1
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Matrix Form

Can rewrite in matrix form:

[µdG + M] ~ψd = ~S + ~B ,

where

Gij =


ψd,jbi

∣∣∣∣
ξ=+1

−
∫ 1

−1
dbi

dξ bj dξ , µd > 0

−ψd,jbi
∣∣∣∣
ξ=−1

−
∫ 1

−1
dbi

dξ bj dξ , µd < 0
, Mij =

∫ 1
−1 ΣtbibjJ(ξ) dξ ,

~Bi =


µdψinvi

∣∣∣∣
ξ=−1

, µd > 0

−µdψinvi

∣∣∣∣
ξ=+1

, µd < 0
, ~Si =

∫ 1
−1 biSJ(ξ) dξ

Matrices are (p+ 1)×(p+ 1)
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DGFEM Sweeps

• Start with ψin = known boundary condition
• Solve for the ~ψd in the first element with:

~ψd =[µdG + M]−1
[
~S + ~B

]
by computing the inverse (the system is p+ 1× p+ 1⇒ small)

• Compute the incoming angular flux for the next element as the
outgoing from the previous element

ψin =
∑
j

bj(1)ψd,j

• Repeatedly solve using the outgoing flux from the previous element
until the right boundary is reached

• Same process for negative angles but sweep from right to left
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Implementation Details

• Implemented in C++ (∼ 3k LOC!)
• Calls LAPACK for dense linear algebra (matrix inversions, matrix

vector products, etc)
• Uses Lua scripts for parameter input i.e. number of angles, number

of elements, cross sections, source
• CMake build system
• Outputs in VisIt’s curve file format for visualization
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Method of Manufactured Solutions

• Choose known solution, plug into transport equation, and solve for
the source

ψd(x) = 1
2 sin(πx)⇒ φ(x) = sin(πx)

⇒ Qd = 1
2[µdπ cos(πx) + Σa sin(πx)]

• Provides analytic solution to compare to
• Expect

E = Chp+1

in the L2 norm
• All calculations were S32
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MMS test verifies arbitrary order of accuracy

101

Number of Elements

10−10

10−8

10−6

10−4

10−2

L
2

E
rr

or

p = 1 (1.992)

p = 2 (2.994)

p = 3 (3.993)

p = 4 (4.993)

p = 5 (5.993)
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High order is more accurate per unknown

102

Number of Unknowns

10−7

10−6

10−5

10−4

10−3

10−2
L

2
E

rr
or

p = 1

p = 2

p = 3

FVM
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Solution for Inhomogeneous Source

Σt = 1 cm−1 , Σs = 0.8 cm−1 , Q =
{

1 , x < 4
0 , x ≥ 4
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Conclusions

• Implemented DGFEM SN solver in C++
• Verified code with order of accuracy MMS tests
• Showed that high order is more accurate per unknown
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