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Background



Thermal Radiative Transfer

• Describes conservation and transfer of energy between photons and
matter

• 6+1 dimensional phase space ⇒ dominates memory and runtime
• Capsaicin: algorithmic improvements are all that’s left
• Goal: first steps toward a QD TRT algorithm with cell-local

coupling to the material energy balance equation

ψ(~x, Ω̂, ν, t)

3D hydro grid

2D angular grid

1D energy grid

1D time dependence
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Quasidiffusion/Variable Eddington Factor Method

• An old method with two names and three disambiguations
• Reactor transport: Quasi-diffusion
• Astrophysicists: VEF has been in our code for decades...
• TRT transport:

• Robust, non-linear acceleration scheme
• Two-level in angle
• Nonlinear projective iteration not additive correction

• Consistent Discretization
• Discretized QD matches discretized transport exactly

• Inconsistent Discretization
• Differ by discretization error
• Acceleration properties the same given QD terms are properly

represented
• QD algorithms can take advantage of this flexibility
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The Bleeding Edge of QD

• Anistratov and Warsa (NSE, 2018)
• Consistent linear-linear DG discretization
• Compared many types of cell interface conditions

• Warsa and Anistratov (JCTT, 2018)
• Inconsistent discretization can affect acceleration properties
• NKA recovers iterative efficiency

• Anistratov, Warsa, and Lowrie (M&C 2019)
• Investigated processor-local QD with processor boundary

conditions to accelerate PBJ

All were 1D only
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Proposed Algorithm

• Combine them all and implement in Capsaicin on 2D triangles
• Extend processor-local QD to Fully Local

• Solve each cell independently
• Compute interior boundary conditions from angular flux that

decouple the cells
• Use NKA to retain iterative efficiency
• TRT algorithm: nonlinearly iterate FLQD with material energy

balance equation “at the bottom”
• Use FLQD as an inexpensive proxy for transport
• Fully Local ⇒ Newton iterations don’t require a global solve
• Cell-wise coupling better than point-wise

Show scheme is reasonably effective for Linear Transport before TRT
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Moment Equations

• Steady-state, mono-energetic, isotropic scattering and source

Ω̂ · ∇ψ + σtψ = σs
4π

∫
ψ dΩ′ + Q

4π

• Angular moments always have more unknowns than equations

∇ · ~J + σaφ = Q ,

∇ ·P + σt ~J = 0

with

φ =
∫
ψ dΩ , ~J =

∫
Ω̂ψ dΩ , P =

∫
Ω̂⊗ Ω̂ψ dΩ

• 3D ⇒ 6 + 3 + 1 = 10 unknowns with only 4 equations
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The Philosophy of QD

• When in doubt, multiply and divide by the scalar flux

P =
∫

Ω̂⊗ Ω̂ψ dΩ→
∫

Ω̂⊗ Ω̂ψ dΩ∫
ψ dΩ︸ ︷︷ ︸
E

φ = Eφ

• QD equations:
∇ · ~J + σaφ = Q

∇ · (Eφ) + σt ~J = 0

• ψ linearly anisotropic ⇒ E = 1
3I, Fick’s Law

• Tensor diffusion in first-order form

∇ · ~J + σaφ = Q

D · ∇φ+ ~J = 0

• QD second-order form has all mixed derivatives in addition to
Laplacian terms ⇒ difficult to discretize
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Linear Transport QD Algorithm

• Solve

Ω̂ · ∇ψ`+1/2 + σtψ
`+1/2 = σs

4πφ
` + Q

4π

for ψ`+1/2

• Compute Eddington tensor:

E`+1/2 =
∑
wd Ω̂d ⊗ Ω̂d ψ`+1/2

d∑
wdψ

`+1/2
d

• Solve QD equations for updated scalar flux φ`+1

∇ · ~J`+1 + σaφ
`+1 = Q ,

∇ ·
(

E`+1/2φ`+1
)

+ σt ~J
`+1 = 0 .

• Update scattering term with QD solution
• Stop when ‖φ`+1 − φ`‖ < tol

initial guess
for φ0

transport
sweep for
ψ`+1/2

compute
Eddington

tensor

solve QD
for φ`+1

converged?

use φ`+1

as final
solution

construct
scattering

source

– DG
– MFEM
– Overlap
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Properties

• Acceleration occurs because Eddington factors converge quickly
• Depends on angular shape not magnitude
• ψ converges quickly in angular shape
• Compensates lagging of scattering term in Source Iteration
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Discretization



Zeroth Moment

• Anistratov and Warsa consistent discretization has both φ and ~J

approximated with linear DG
• Multiply by test function u and integrate over single element∫

u∇ · ~J dV +
∫
σa uφdV =

∫
uQdV

• Integrate by parts since ~J is discontinuously approximated∮
u Ĵn dA−

∫
∇u · ~J dV +

∫
σa uφ dV =

∫
uQdV

where Ĵn is an upwind-consistent net current

∇ · ~J + σaφ = Q
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FEM Interpolation

• Shape functions on reference triangle

B1(ξ, η) = 1− ξ − η , B2(ξ, η) = ξ , B3(ξ, η) = η

• Interpolate scalar flux with linear combination of shape functions

φ(ξ, η) =
∑
j

Bj(ξ, η)φj

• Re-write as dot product of vectors of shape functions and coefficients

φ(ξ, η) =
[
B1(ξ, η) B2(ξ, η) B3(ξ, η)

]φ1

φ2

φ3


= Bφ

(0,0) (1,0)

(0,1)

1 2

3

ξ

η

~x(~ζ)

[
~x(~ζ)

]−1

~x1

~x2

~x3

~A1

~A2

~A3
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FEM Interpolation (cont.)

• Interpolate each component of the current with linear shape
functions

Jd(ξ, η) =
∑
j

Bj(ξ, η)Jd,j , d = x, y

• Re-write as matrix-vector product

~J(ξ, η) =
[
B1 B2 B3

B1 B2 B3

]


Jx1

Jx2

Jx3

Jy1

Jy2

Jy3


= NJ
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Discrete Zeroth Moment

−DJ + Maφ = MQ− Jb

with
D =

∫
(∇B)T N dV , Ma =

∫
σaBTB dV ,

M =
∫

BTB dV

Use isoparametric transformation to transform derivatives and convert
from reference to physical space

−
∫
∇u · ~J dV +

∫
σa uφ dV =

∫
uQdV −

∮
u Ĵn dA
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First Moment

• Multiply by vector-valued test function ~v and integrate over element∫
~v · ∇ · (Eφ) dV +

∫
σt ~v · ~J dV = 0

• Integrate by parts since both φ and E are discontinuous∮
~v ·E · n̂ φ̂dV −

∫
∇~v : EφdV +

∫
σt ~v · ~J dV = 0

where

∇~v =
[
∂vx

∂x
∂vx

∂y
∂vy

∂x
∂vy

∂y

]
,

A : B =
∑
i

∑
j

AijBij = A11B11 +A12B12 +A21B21 +A22B22

and φ̂ is an upwind-consistent scalar flux

∇ · (Eφ) + σt ~J = 0
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Discrete First Moment

−Gφ+ MtJ = −φ
b

with
G =

∫
(∇N)T EB dV , Mt =

∫
σtNTN dV

−
∫
∇~v : Eφ dV +

∫
σt~v · ~J dV = −

∮
~v ·E · n̂ φ̂ dA
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Boundary Terms



Upwind Consistency

• Want consistency with DG transport
• Face between elements e and e′ with normal from e→ e′, the

upwind angular flux is

Ω̂ · n̂ ψ̂ = 1
2

(
|Ω̂ · n̂|+ Ω̂ · n̂

)
ψe + 1

2

(
|Ω̂ · n̂| − Ω̂ · n̂

)
ψe′

• Discrete current∫
Ω̂ · n̂ ψ̂ dΩ =

∫
Ω̂·n̂>0

Ω̂ · n̂ ψe dΩ︸ ︷︷ ︸
local outflow

+
∫

Ω̂·n̂<0
Ω̂ · n̂ ψe′ dΩ︸ ︷︷ ︸

neighbor’s inflow

= J+
n,e + J−n,e′

• Consistent boundary current:

Ĵn = J+
n,e + J−n,e′

• Boundary scalar flux from half-range scalar fluxes

φ̂ = φ+
n,e + φ−n,e′
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Fully Local Discretization

• All terms are cell-local except boundary terms
• Boundary terms have a

• Local outflow contribution (J+
n,e and φ+

n,e)
• Non-local inflow contribution (J−n,e′ and φ−n,e′ )

• Decouple cells
• Outflow from local information + QD BCs
• Inflow from neighbor’s high-order solution from previous sweep

• Solve QD equations on each cell independently
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Miften-Larsen QD Outflow Condition

• Miften-Larsen QD boundary conditions:

~J · n̂ = J+
n + J−n

= 2J+
n − (J+

n − J−n )

= 2J+
n −

∫
|Ω̂ · n̂|ψ dΩ

= 2J+
n −

∫
|Ω̂ · n̂|ψ dΩ∫

ψ dΩ
φ

= 2J+
n −Gφ

∴ J+
n = 1

2

[
~J · n̂+Gφ

]
• Provides expression for transport-consistent outflow partial current
• ψ linearly anisotropic ⇒ G = 1

2 , recover Marshak boundary
conditions
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High-Order Inflow Condition

• Compute inflow from ψ at previous iteration

J−n =
∫

Ω̂·n̂<0
Ω̂ · n̂ ψ dΩ

• Combining QD outflow and high-order inflow

Ĵn = 1
2

(
~J · n̂+Gφ

)
+ J−n

• Discrete boundary terms∮
u Ĵn dA→ 1

2

∮
BT n̂TNJ dA+ 1

2

∮
GBTBφ dA+

∮
BT J−n dA

• Adds a bilinear form for the current and scalar flux and a RHS
source term computed from transport
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Scalar Flux QD Boundary

• Use high-order information to get a boundary form for φ±n

φ+
n = 1

C+
n
J+
n , C+

n =
∫

Ω̂·n̂>0 Ω̂ · n̂ ψ dΩ∫
Ω̂·n̂>0 ψ dΩ

• Combine with Miften-Larsen
φ̂ = φ+

n,e + φ−n,e′

= 1
C+
n
J+
n + φ−n,e′

= 1
2C+

n

[
~J · n̂+Gφ

]
+ φ−n

• Discrete first moment boundary term:∮
~v·E·n̂ φ̂dA→

∮
NTEn̂ 1

2C+
n
n̂TNJ dA+

∮
NTEn̂ G

2C+
n

BφdA

+
∫

NTEn̂ φ−n dA
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Putting it All Together

• For each element solve:[
Ma −D
−G Mt

][
φ

J

]
=
[
f

g

]

with boundary terms included in the definitions of the left and right
hand sides

• 9× 9 system ⇒ can directly invert
• Implemented with Trilinos’ Epetra SerialDenseSolver
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Boundary Integration



Analytic Integration

• In Capsaicin, most FEM integrals are pre-evaluated by hand
• Problem: all QD terms inherit the spatial variance of ψ(~x) = Bψ

E(~x) =
∫

Ω̂⊗ Ω̂ψ(~x) dΩ∫
ψ(~x) dΩ

=
∫

Ω̂⊗ Ω̂ Bψ dΩ∫
Bψ dΩ

⇒ E, G, and C+
n are all improper rational polynomials in space

• Integral of improper rational polynomial involves logarithms of the
denominator
• lnφ not defined for φ < 0 ⇒ loss of robustness to negativity

• First moment boundary terms are exceptionally complicated∮
NTEn̂ G

2C+
n

B dA =
∮ quintic polynomial

cubic polynomial dA

characterized by 18 coefficients (numerator and denominator of the
QD terms at the two nodes on the face)
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Method One: Closing “After the Fact”

• Apply an angular and spatial closure after discretizing in space∮
~v ·E · n̂ φ̂ dA→

∮
~v ·P · n̂∮
φ̂ dA

∮
φ̂dA

• After the fact closure avoids integrating rational polynomials
• Derive Miften-Larsen BCs in spatially discrete context, can get all

terms as ratio of integrals instead of integral of ratios
• Motivation: in 1D the only integral is the gradient term (no

boundary integrals)∫ dBi
dx EBj dx→

∫ dBi

dx
∫
µ2 ψ dµdx∫ ∫
ψ dµdx

∫
Bj dx

linear elements ⇒ dBi

dx = constant, after the fact closure is
equivalent to using spatially averaged Eddington factor
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Method Two: Numerical Quadrature

• Suboptimal convergence for discrete closure
• Analytic integrals are complicated, error prone, and have restrictions
• Implemented Gauss quadrature for the face integral terms involving

QD factors
• After the fact may have worked in 1D because spatial averaging

equivalent to one-point quadrature
• Not possible to recast 2D boundary terms with discrete closure

as low-order quadrature
• 2 point GQ is accurate enough

• QD factors slowly vary in space for simple isotropic solutions
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Results



Convergence Test

• MMS is somewhat difficult in Capsaicin
• Instead, use difference between transport solution and QD solution

+ triangle inequality

‖φSn
− φQD‖ = ‖(φSn

− φ) +(φ− φQD) ‖
≤ ‖φSn

− φ‖+ ‖φ− φQD‖
= CSn

h2 + CQDh
p

≈ O
(
hmin(2,p)

)
• Use convergence of Sn and QD as proxy for error
• Test can verify convergence up to second order
• All results used triangular Gauss-Chebyshev-Legendre S8 and an

iterative tolerance of 10−10
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Spatial Convergence Rates

~x ∈ [0, 1]× [0, 1] , σt = σs = 4 cm−1 , Q = 1 cm−2 s−1

2−10 2−9 2−8 2−7 2−6 2−5 2−4

h

10−5

10−4

10−3

10−2

‖φ
S
n
−
φ
Q
D
‖

GQ

Discrete Closure

Fully Local QD second order for GQ only
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Scattering Ratio Test

~x ∈ [0, 1]× [0, 1] , σt = 10 cm−1 , σs = cσt , Q = 1 cm−2 s−1
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Is it just NKA?
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Thick Diffusion Limit

~x ∈ [0, 1]× [0, 1] , σt = 1
ε , σs = 1

ε − ε , Q = ε
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Thick Diffusion Limit (cont.)

0.0 0.2 0.4 0.6 0.8 1.0

x

0.0
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Fully Local doesn’t maintain thick diffusion limit
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Thick Diffusion Limit (cont.)

• Converge DSA with ε = 10−3

• Use ψ to do one iteration of FLQD
• Compare scalar fluxes
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Conclusions

• After the fact closure had suboptimal spatial accuracy not seen in 1D
• Numerical quadrature of rational polynomial terms led to second

order algorithm
• Fully Local not effective for linear transport

• Weak acceleration effects
• Krylov just as effective
• No thick diffusion limit

• Still viable for intended TRT use
• At least second order accurate ⇒ accurate proxy for cell-local

coupling
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Future Work

• MMS
• FLQD could be third order
• Is discrete closure inconsistent with transport or with QD

equations?
• Implement global and processor local QD

• Couple elements by computing J−n and φ−n from Miften-Larsen
of neighbor cell

• Extend to parallel
• Communicate QD factors across parallel boundaries

• Compare Fully Local, processor-local, and global QD for accelerating
PBJ

• Accuracy and expense of numerical quadrature for anisotropic
problems

• TRT
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One Point Quadrature Equivalance

• Volumetric term in 1D∫ dv
dxEφdx→

∫ dBi
dx EBj dx

• After the fact closure∫ dBi

dx
∫
µ2 ψ dµdx∫ ∫
ψ dµdx

∫
Bj dx = dBi

dx

∫ ∫
µ2 ψ dµdx∫ ∫
ψ dµdx

∫
Bj dx

= 1
2

dBi
dx Ē

Ē = P1 + P2

φ1 + φ2

• One-point GQ: ξ = 1
2 , w = 1∫ dBi
dx EBj dx = dBi

dx

∫
EBj dx

= w
dBi
dx [EBj ]ξ= 1

2

= 1
2

dBi
dx Ē

B1(ξ) = 1− ξ , B2(ξ) = ξ



Boundary Terms and Low-Order Quadrature

• Discrete closure for
∮
GuφdA in zeroth moment’s Miften-Larsen

BC term∮
GBTB dV →

∮
BTB

∫
|Ω̂ · n̂|ψ dΩ dA∮

B
∫
ψ dΩ dA

∮
B dA

• Mass-matrix like term on numerator weights |Ω̂ · n̂|ψ non-uniformly
to the nodes

• Denominator is simple average
• Evaluating G at quadrature points will never weight the numerator

towards the nodes differently than the denominator



The Real G

• Casting ∇~v : E as a matrix-vector product requires flattening the
tensors into vectors such that

〈∇~v〉 · 〈E〉 = ∇~v : E

• Order the flattened vectors as

〈∇~v〉 =
[
∂vx

∂x
∂vx

∂y
∂vy

∂x
∂vy

∂y

]T
, 〈E〉 =

[
Exx Exy Eyx Eyy

]T
• Let,

〈∇~v〉 = dv ⇒ d =
[
∇B1 ∇B2 ∇B3

∇B1 ∇B2 ∇B3

]
• Volumetric term is then:∫

∇~v : Eφ dV →
∫

dT 〈E〉B dV
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