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Motivation

•Model conservation of energy between photons and matter
•High energy density physics simulations requires tightly coupled modeling of
hydrodynamics and radiative transfer

• TRT typically bottleneck, can be 90% of runtime and memory

ψ(x,Ω, ν, t)

3D hydro grid

2D angular grid

1D frequency grid

1D time dependence

•High‐order hydrodynamics on curved meshes, low‐order refined too expensive ⇒
need TRT compatible with curved meshes

•Variable Eddington Factor (VEF) method: efficient transport scheme
• Enables significant algorithmic flexibility not possible with traditional transport
methods

•Development of discretizations with corresponding scalable linear solvers difficult
•Goal: develop an efficient high‐order Variable Eddington Factor method compatible
with curved meshes

Transport Background

• Steady‐state, mono‐energetic, linear transport with isotropic scattering and source

Ω · ∇ψ + σtψ = σs
4π

∫
ψ dΩ′ + q

• SN angular model: collocate at discrete angles chosen from a quadrature rule on the
unit sphere

ψd(x) = ψ(x,Ωd) ,
∫
ψ dΩ →

∑
d

wdψd

•Decouple in angle by lagging scattering
•Required for problem to be computationally tractable
•Can converge arbitrarily slowly in problems with optically thick materials

The Variable Eddington Factor Method

• Solve the coupled transport‐VEF system
Ω · ∇ψ + σtψ = σs

4π
φ + q

∇ · J + σaφ = Q0

∇ · (Eφ) + σtJ = 0
where φ and J are the zeroth and first moments of ψ, Q0 =

∫
q dΩ, and

E(x) =
∫

Ω ⊗ Ωψ dΩ∫
ψ dΩ

is the Eddington tensor
• Linear into nonlinear, added unknowns. E weak function of ψ ⇒ converges rapidly

Ω · ∇ψ + σtψ = σs
4π
φ + q

∇ · J + σaφ = Q0
∇ · (Eφ) + σtJ = 0

E(·) =
∫

Ω ⊗ Ω (·) dΩ∫
(·) dΩ

φ

Discontinuous Galerkin VEF Discretization

•Represent solution and test space with
piecewise discontinuous polynomials

•Direct discretization yields coupled 2 × 2
block system

K1 K2

F n̂

•Can choose “numerical fluxes” to allow local elimination of the vector variable,
stabilize this approximation with addition of penalty term

block diagonal
by elementcoupled to neighbors

penalty
contribution

•Careful modifications of “Unified Analysis of DG Methods” leads to∫
Γ
κ JuK JφK ds−

∫
Γ

JuK{{ 1
σt

∇h · (Eφ) · n̂
}}

ds−
∫

Γ

{{
∇hu

σt

}}
· JEφn̂K ds

+
∫

∇hu · 1
σt

∇h · (Eφ) dx +
∫
σa uφ dx =

∫
uQ0 dx

where
∇h · (Eφ) = E∇hφ + (∇h · E)φ , ∇h · E = ∇h · Pϕ− P∇hϕ

ϕ2

Subspace Correction Preconditioner

•Can decompose DG space as
DG = continuous

⊕
discontinuous

multigrid classical smoothers
•Combination shown to be effective independent of the mesh size, polynomial
order, and penalty parameter for standard diffusion problems

•Continuous operator formed algebraically by assembling the original DG system on
a continuous finite element space

DG

Assemble

CG

High‐Order Accuracy on Curved Meshes

2−6 2−5

h

10−8

10−7

10−6

10−5

10−4

10−3

L
2

E
rr

or

1
2

1
3

1

4

p = 1

p = 2

p = 3

2−6 2−5

h

10−6

10−5

10−4

10−3

10−2

L
2

E
rr

or

1
2

1

3

1

4

p = 1

p = 2

p = 3

Iterative Efficiency on Crooked Pipe Problem

Is
ot
ro
pi
c
In
flo

w

Vacuum

σt = 0.2 cm−1

σa = 10−3 cm−1

σt = 200 cm−1

σa = 10−3 cm−1

•Outer solver: fixed‐point with Anderson acceleration, tol=10−6, 4 Anderson vectors
• Inner solver: BiCGStab, tol = 10−7, previous outer as initial guess, subspace
correction preconditioner (HypreBoomerAMG, Jacobi)

p = 1 p = 2 p = 3
Ne Outer Avg. In Outer Avg. In Outer Avg. In
256 13 9.38 14 10.71 16 12.88
1024 14 10.64 17 10.18 18 13.5
4096 15 11.0 18 11.17 21 13.38

•Uniform iterations for all orders!

Conclusions

•Designed a DG VEF method that has
•High‐order accuracy
•Compatibility with curved meshes
• Efficient preconditioned iterative solvers

•DG VEF shown to be effective on challenging proxy problem from TRT
•Uniform inner and outer iterations

•Currently working to implement this method in LLNL’s next‐generation
multiphysics code
•Will be run on El Capitan, one of the world’s first exascale computers
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