High-Order Variable Eddington Factor Methods for Thermal Radiative Transfer

Motivation

e Model conservation of energy between photons and matter

e High energy density physics simulations requires tightly coupled modeling of
hydrodynamics and radiative transfer

e TRT typically bottleneck, can be 20% of runtime and memory
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e High-order hydrodynamics on curved meshes, low-order refined too expensive =
need TRT compatible with curved meshes

e Variable Eddington Factor (VEF) method: efficient transport scheme

e Enables significant algorithmic flexibility not possible with traditional transport
methods
e Development of discretizations with corresponding scalable linear solvers difficult

e Goal: develop an efficient high-order Variable Eddington Factor method compatible
with curved meshes

Transport Background

e Steady-state, mono-energetic, linear transport with isotropic scattering and source
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e Sy angular model: collocate at discrete angles chosen from a quadrature rule on the
unit sphere
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e Decouple in angle by lagging scattering

e Required for problem to be computationally tractable
e Can converge arbitrarily slowly in problems with optically thick materials

The Variable Eddington Factor Method

e Solve the coupled transport-VEF system
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where ¢ and J are the zeroth and first moments of ¢, Q, = [ ¢ df2, and
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Is the Eddington tensor

e Linear into nonlinear, added unknowns. E weak function of ¢» = converges rapidly
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Discontinuous Galerkin VEF Discretization

e Represent solution and test space with
niecewise discontinuous polynomials

e Direct discretization yields coupled 2 x 2

nlock system
e Can choose “numerical fluxes” to allow local elimination of the vector variable,

stabilize this approximation with addition of penalty term
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e Careful modifications of “Unified Analysis of DG Methods” leads to

1 ) V. .
/F/{ [u] [] ds — /F [u] {{avh - (Eyp) n}} ds — /F {{ p j} - [Epn] ds

1
+/th-—vh-(Egp)dx+/aaugde:/uQOdX
Ot

penalty
contribution

where
~V,-Po—-PV,¢

¢2

Subspace Correction Preconditioner

e Can decompose DG space as

DG = continuous & discontinuous
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multigrid classical smoothers
e Combination shown to be effective independent of the mesh size, polynomial
order, and penalty parameter for standard diffusion problems

e Continuous operator formed algebraically by assembling the original DG system on
a continuous finite element space
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Iterative Efficiency on Crooked Pipe Problem
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e Outer solver: fixed-point with Anderson acceleration, to1=10"% 4 Anderson vectors

e Inner solver: BiCGStab, tol = 1077, previous outer as initial guess, subspace
correction preconditioner (HypreBoomerAMG, Jacobi)

p=1 p=2 p=3
N, Outer Avg. In Outer Avg. In Outer Avg. In
256 13 9.38 14 10.71 16 12.88
1024 14 10.64 17 10.18 18 13.5
4096 15 11.0 18 11.17 21 13.38

e Uniform iterations for all orders!

Conclusions

e Designed a DG VEF method that has
e High-order accuracy
e Compatibility with curved meshes
e Efficient preconditioned iterative solvers
e DG VEF shown to be effective on challenging proxy problem from TRT
e Uniform inner and outer iterations

e Currently working to implement this method in LLNL's next-generation
multiphysics code

e Will be run on El Capitan, one of the world’s first exascale computers
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