High-Order Variable Eddington Factor Methods for Thermal Radiative Transfer

Motivation

- Model conservation of energy between photons and matter
- High energy density physics simulations requires tightly coupled modeling of hydrodynamics and radiative transfer
- TRT typically bottleneck, can be 90% of runtime and memory

• High-order hydrodynamics on curved meshes, low-order refined too expensive \Rightarrow need TRT compatible with curved meshes

- Variable Eddington Factor (VEF) method: efficient transport scheme • Enables significant *algorithmic flexibility* not possible with traditional transport methods
- Development of discretizations with corresponding scalable linear solvers difficult
- Goal: develop an efficient high-order Variable Eddington Factor method compatible with curved meshes

Transport Background

• Steady-state, mono-energetic, linear transport with isotropic scattering and source

$$\mathbf{\Omega} \cdot \nabla \psi + \sigma_t \psi = \frac{\sigma_s}{4\pi} \int \psi \, \mathrm{d}\Omega' + q$$

• S_N angular model: collocate at *discrete angles* chosen from a quadrature rule on the unit sphere

$$\psi_d(\mathbf{x}) = \psi(\mathbf{x}, \mathbf{\Omega}_d), \quad \int \psi \, \mathrm{d}\Omega \to \sum w_d \psi_d$$

- Decouple in angle by lagging scattering
- Required for problem to be computationally tractable
- Can converge arbitrarily slowly in problems with optically thick materials

The Variable Eddington Factor Method

Solve the coupled transport-VEF system

$$\mathbf{\Omega} \cdot \nabla \psi + \sigma_t \psi = \frac{\sigma_s}{4\pi} \varphi + q$$
$$\nabla \cdot \mathbf{J} + \sigma_a \varphi = Q_0$$
$$\nabla \cdot (\mathbf{E}\varphi) + \sigma_t \mathbf{J} = 0$$

where φ and J are the zeroth and first moments of ψ , $Q_0 = \int q \, d\Omega$, and $\mathbf{\hat{C}} \mathbf{O} = \mathbf{O} (10)$

$$\mathbf{E}(\mathbf{x}) = \frac{\int \mathbf{\Omega} \otimes \mathbf{\Omega} \,\psi \,\mathrm{d}\Omega}{\int \psi \,\mathrm{d}\Omega}$$

is the Eddington tensor

• Linear into nonlinear, added unknowns. E weak function of $\psi \Rightarrow$ converges rapidly

$$\mathbf{\Omega} \cdot \nabla \psi + \sigma_t \psi = \frac{\sigma_s}{4\pi} \varphi + q \qquad \begin{array}{c} \nabla \cdot \mathbf{J} + \sigma_a \varphi = Q_0 \\ \nabla \cdot (\mathbf{E}\varphi) + \sigma_t \mathbf{J} = 0 \end{array}$$

 $\mathbf{E}(\cdot) = \frac{\int \mathbf{\Omega} \otimes \mathbf{\Omega} (\cdot) \, \mathrm{d}\Omega}{\int (\cdot) \, \mathrm{d}\Omega}$

Samuel Olivier

University of California, Berkeley

Discontinuous Galerkin VEF Discretization

Iterative Efficiency on Crooked Pipe Problem

	p = 1		p=2		p = 3	
N_e	Outer	Avg. In	Outer	Avg. In	Outer	Avg. In
256	13	9.38	14	10.71	16	12.88
1024	14	10.64	17	10.18	18	13.5
4096	15	11.0	18	11.17	21	13.38

- Uniform iterations for all orders!
- Designed a DG VEF method that has
- High-order accuracy
- Compatibility with curved meshes
- Efficient preconditioned iterative solvers
- DG VEF shown to be effective on challenging proxy problem from TRT • Uniform inner and outer iterations
- Currently working to implement this method in LLNL's next-generation multiphysics code

- Math. Physics, vol. 4, pp. 136–149, 1964.
- Nuclear Science and Engineering (M&C 2021), 2021.
- no. 6-7, pp. 480–496, 2017.
- Physics, vol. 419, p. 109696, 2020.
- methods with hp-refinement," ArXiv, vol. abs/2009.01287, 2020.
- 2019.
- 2002.

• Outer solver: fixed-point with Anderson acceleration, $tol=10^{-6}$, 4 Anderson vectors • Inner solver: BiCGStab, tol = 10^{-7} , previous outer as initial guess, subspace correction preconditioner (HypreBoomerAMG, Jacobi)

Conclusions

• Will be run on El Capitan, one of the world's first exascale computers

References

[1] V. Dobrev, T. Kolev, and R. Rieben, "High-order curvilinear finite element methods for Lagrangian hydrodynamics," SIAM Journal on Scientific Computing, vol. 34, pp. B606–B641, 2012.

[2] V. Ya. Gol'din, "A quasi-diffusion method of solving the kinetic equation," USSR Comp. Math. and

[3] S. Olivier, T. Haut, and B. Yee, "Discontinuous galerkin variable eddington factor methods," in Proceedings of the International Conference on Mathematics and Computational Methods Applied to

[4] S. Olivier and J. E. Morel, "Variable eddington factor method for the sn equations with lumped discontinuous galerkin spatial discretization coupled to a drift-diffusion acceleration equation with mixed finite-element discretization," Journal of Computational and Theoretical Transport, vol. 46,

[5] B. Yee, S. Olivier, T. Haut, M. Holec, V. Tomov, and P. Maginot, "A quadratic programming flux correction method for high-order dg discretizations of sn transport," Journal of Computational

[6] W. Pazner and T. Kolev, "Uniform subspace correction preconditioners for discontinuous galerkin

[7] T. S. Haut, P. G. Maginot, V. Z. Tomov, B. S. Southworth, T. A. Brunner, and T. S. Bailey, "An efficient sweep-based solver for the sn equations on high-order meshes," Nuclear Science and Engineering,

[8] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, "Unified analysis of discontinuous galerkin methods for elliptic problems," SIAM Journal on Numerical Analysis, vol. 39, no. 5, pp. 1749–1779,