
Journal of Computational Physics 473 (2023) 111747
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

A family of independent Variable Eddington Factor methods 

with efficient preconditioned iterative solvers

Samuel Olivier a,∗, Will Pazner b,c, Terry S. Haut c, Ben C. Yee c

a Applied Science & Technology, University of California, Berkeley, Berkeley, CA 94708, United States of America
b Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR 97201, United States of America
c Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 November 2021
Received in revised form 29 October 2022
Accepted 30 October 2022
Available online 9 November 2022

Keywords:
Variable Eddington Factor
Discontinuous Galerkin

We present a family of discretizations for the Variable Eddington Factor (VEF) equations 
that have high-order accuracy on curved meshes and efficient preconditioned iterative 
solvers. The VEF discretizations are combined with the Discontinuous Galerkin transport 
discretization from [1] to form effective high-order, linear transport methods. The VEF 
discretizations are derived by extending the unified analysis of Discontinuous Galerkin 
methods for elliptic problems presented by Arnold et al. [2] to the VEF equations. 
This framework is used to define analogs of the interior penalty, second method of 
Bassi and Rebay, minimal dissipation local Discontinuous Galerkin, and continuous finite 
element methods. The analysis of subspace correction preconditioners [3], which use 
a continuous operator to iteratively precondition the discontinuous discretization, is 
extended to the case of the non-symmetric VEF system. Numerical results demonstrate 
that the VEF discretizations have arbitrary-order accuracy on curved meshes, preserve the 
thick diffusion limit, and are effective on a proxy problem from thermal radiative transfer 
in both outer transport iterations and inner preconditioned linear solver iterations. We 
demonstrate that the VEF solution converges to the SN transport solution as the mesh 
is refined on both problems with smooth and non-smooth behavior in angle. Parallel 
performance studies show that the interior penalty VEF discretization’s linear solve weak 
scales out to 1024 processors and strong scales well on a single node. Particular attention 
is paid to the parallel performance of the VEF algorithm when used in combination with a 
parallel block Jacobi transport sweep.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Variable Eddington Factor (VEF) method [4], also known as Quasidiffusion (QD) [5], is a rapidly converging, nonlinear 
scheme for solving the Boltzmann transport equation, a crucial component of high energy density physics (HEDP) simula-
tions, nuclear reactor analysis, and medical physics. VEF has been applied to a wide range of transport and multiphysics 
problems including (but not limited to) nuclear reactor eigenvalue problems [6], nuclear reactor kinetics [7], and thermal 
radiative transfer (TRT) [8]. It performs well in problems having both optically thick and thin regions and treats anisotropic 
scattering equally well [9,10]. Robust convergence is achieved by iteratively coupling the transport equation to the VEF 
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equations, a moment-based equivalent reformulation of transport. The exact closures used to form the VEF equations are 
weak functions of the solution meaning even simple iterative schemes, such as fixed-point iteration, can often converge in 
a small number of iterations that is independent of the mean free path.

VEF offers significant algorithmic flexibility in that any valid discretization of the VEF equations will yield a rapidly con-
verging algorithm. This is in stark contrast to Diffusion Synthetic Acceleration (DSA) which places severe restrictions on the 
discretization of the moment equations in order to guarantee stability [11]. In the case where the VEF and transport dis-
cretizations are not algebraically consistent, referred to as a VEF method with an “independent” discretization [12,13], the 
discrete solutions of the transport and VEF equations will differ on the order of the discretization error and will be equiv-
alent only in the limit as the mesh is refined. However, even in an under resolved problem, VEF still produces a “transport 
solution” in that the solution of the VEF method is a discrete solution of an equivalent reformulation of the transport 
equation. Furthermore, VEF methods generally preserve the thick diffusion limit [14] and have conservation even if the 
transport discretization in isolation does not. These properties are particularly useful in multiphysics calculations since the 
lower-dimensional VEF equations can be directly coupled to the other physics components in place of the high-dimensional 
transport equation. In addition, discretizations for the transport and VEF equations can be designed independently so that 
they are in some sense optimal for their intended uses.

This flexibility has been exploited to improve efficiency in relation to all seven dimensions of the transport equation. 
Ghassemi and Anistratov [15] showed that different order temporal discretizations can be applied to the transport and VEF 
equations. Ongoing work suggests that time-stepping stability and accuracy can be maintained when just one transport 
inversion is performed per time step [16]. Anistratov and Coale [17] used data compression techniques to reduce storage 
costs in time-dependent calculations. In astrophysics, VEF is used to simplify the implementation of coupling TRT to hydro-
dynamics and to avoid the memory cost of solving the time-dependent transport equation [18–20]. Davis et al. [21] used 
a short characteristics discretization of the transport equation. Olivier and Morel [22] and Lou et al. [23] designed a spatial 
discretization of the VEF equations to increase multiphysics compatibility. Yee et al. [24] showed that robust convergence 
is maintained even when positivity-preserving methods are used inside the iteration. Anistratov [25] solved the multigroup 
TRT equations by using a VEF method with multiple levels in frequency. It is also well-known that the multigroup eigenvalue 
problem can be solved with only the need for eigenvalue iterations on the one-group VEF equations [26].

The above techniques rely on the efficient solution of the discretized VEF equations. VEF methods reduce the overall cost 
of the simulation by trading inversions of the high-dimensional transport equation for inversions of the lower-dimensional 
VEF equations. In all of VEF’s applications, the inversion of the discretized VEF equations is buried under multiple nested 
loops corresponding to time integration, Newton iterations, eigenvalue iterations, multi-group iterations, and/or fixed-point 
iterations. The efficient iterative inversion of the VEF equations is then crucial to the efficiency of the overall algorithm and 
is a prerequisite for the practicality of any VEF method.

The unusual structure of the VEF equations and their lack of self-adjointness make the development of discretizations 
and their corresponding preconditioned iterative solvers difficult. While considerable effort has been placed into discretizing 
the VEF equations, to our knowledge, existing methods either rely on expensive and unscalable preconditioners such as block 
incomplete LU (BILU) factorization, cannot be solved with iteration counts independent of the mesh size, or do not mention 
solvers entirely. Previous work on discretizing the VEF equations includes finite volume [9,12,27,18,28], finite difference 
[29], mixed finite element [30,22,31,23], continuous finite element [32,13], and discontinuous finite element [33] techniques. 
Most VEF methods are designed to be algebraically consistent with their application’s discretized transport equation which 
typically requires discretizing the first-order form of the VEF equations. Such discretizations solve for both the zeroth and 
first moment of the solution and thus have significantly more unknowns than discretizations of the second-order form. In 
addition, block preconditioners [34] are required to efficiently solve discretizations of the first-order form. Such solvers can 
require nested iteration for robustness (see [35] for a radiation diffusion example).

Warsa and Anistratov [13] showed that VEF methods with and without algebraic consistency converge equivalently as 
long as the transport data is properly represented. In particular, computing the Eddington tensor and boundary factor 
using finite element interpolation and Discrete Ordinates (SN ) angular quadrature enables rapid convergence for any valid 
discretization of the VEF equations. An independent discretization of the second-order form of the VEF equations then has 
the potential to provide the rapid convergence of a consistent VEF method while solving for fewer unknowns and avoiding 
the need for block preconditioners. Such a method also has the flexibility to discretize the VEF equations in a manner that 
can leverage existing linear solver technology.

Our motivation for this research is in the context of HEDP experiments where the tightly coupled simulation of hydrody-
namics and TRT is required, the latter of which typically includes the SN transport equation. For hydrodynamics, it has been 
shown that, compared to low-order methods, high-order methods on curved meshes have improved robustness, symmetry 
preservation, and strong scaling on emerging high performance computer architectures [36–38]. Transport methods com-
patible with this multiphysics framework are desired. Haut et al. [1] showed that adequately approximating realistic meshes 
generated from a high-order hydrodynamics code as straight-edged required a significant number of mesh refinements lead-
ing to an impractical increase in transport unknowns. It is also possible that high-order accurate transport methods could be 
beneficial in terms of multiphysics compatibility with high-order hydrodynamics. High-order transport methods compatible 
with curved meshes have been developed recently in [39,1] with corresponding consistent DSA discretizations in [40,41]. 
However, high-order discretizations of the VEF equations compatible with curved meshes have not yet been developed.
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In this paper, we design a family of independent VEF discretizations for the linear, steady-state transport problem that 
can be efficiently and scalably solved with high-order accuracy, in multiple dimensions, and on curved meshes. Our ap-
proach is to begin with discretization techniques known to have effective preconditioners on the simpler case of radiation 
diffusion (i.e. the model Poisson problem) and adapt them to the VEF equations. By using the Eddington tensor and bound-
ary factor interpolation procedure established in [13], these methods achieve both rapid convergence in outer fixed-point 
iterations and in inner linear solver iterations when paired with a high-order Discontinuous Galerkin (DG) discretization of 
SN transport.

In particular, we extend the unified analysis of DG methods developed for elliptic problems presented by Arnold et al. [2]
to the VEF equations to derive analogs of the interior penalty (IP), second method of Bassi and Rebay (BR2), minimal 
dissipation local Discontinuous Galerkin (MDLDG), and continuous finite element (CG) techniques. We show that the IP and 
BR2 VEF methods are effectively preconditioned by the subspace correction method from Pazner and Kolev [3] and that 
Algebraic Multigrid (AMG) is effective for the CG and MDLDG discretizations. Anistratov and Warsa [33] also applied DG 
techniques to the VEF equations but they discretize the first-order form of the VEF equations and only consider lowest-
order elements in one dimension. We note that our CG operator is equivalent to extending the continuous finite element 
VEF discretization in [13] to multiple dimensions, arbitrary-order, and curved meshes.

The paper proceeds as follows. First, we describe the VEF method analytically and discuss iterative schemes to solve 
the coupled transport-VEF system. Then, we provide background on representing high-order meshes and finite element 
solutions and present the mathematical notation that will be used in the remainder of the paper. We derive the extension 
of the unified framework for DG to the VEF equations. The IP, BR2, MDLDG, and CG VEF discretizations are derived from 
this framework. §6 discusses the design and analysis of subspace correction preconditioners and extends their analysis to 
the case of non-symmetric linear systems.

We next give computational results. We show that all the methods presented achieve high-order accuracy on a curved 
mesh through the method of manufactured solutions, preserve the thick diffusion limit both on an orthogonal and a severely 
distorted curved mesh, and are effective on the linearized, steady-state crooked pipe problem, a challenging proxy problem 
from TRT, in both outer fixed-point iterations and inner linear solver iterations. Next, the IP VEF solution is shown to 
converge in space to the DG SN transport solution computed using the DSA preconditioner of Haut et al. [40] on both a 
problem with smooth and non-smooth solution in angle. We then present a parallel weak scaling study for the IP discretiza-
tion which demonstrates the scalability of the algorithm out to 1024 processors and 40 million VEF scalar flux unknowns. 
This is followed by a strong scaling study showing the performance of the IP VEF method on a single node. The parallel scal-
ing studies include an investigation of the performance consequences associated with using a parallel block Jacobi transport 
sweep. Finally, we give conclusions and recommendations for future work.

2. The VEF method

The steady-state, mono-energetic, fixed-source transport problem with isotropic scattering and inflow boundary condi-
tions is:

� · ∇ψ + σtψ = σs

4π

∫
ψ d�′ + q , x ∈ D , (1a)

ψ(x,�) = f (x,�) , x ∈ ∂D and � · n̂ < 0 , (1b)

where ψ(x, �) is the angular flux, � ∈ S2 the direction of particle flow, D the spatial domain of the problem with ∂D
its boundary, σt(x) and σs(x) the total and scattering macroscopic cross sections, respectively, q(x, �) the fixed-source, and 
f (x, �) the inflow boundary function. The VEF equations are given by

∇ · J + σaϕ = Q 0 , (2a)

∇ · (Eϕ) + σt J = Q 1 , (2b)

where σa(x) = σt(x) −σs(x) is the absorption macroscopic cross section, ϕ(x) and J (x) the zeroth and first angular moments 
of the angular flux, and

E(x) =
∫

� ⊗ �ψ d�∫
ψ d�

(3)

is the Eddington tensor. We refer to ϕ(x) as the scalar flux and J (x) as the current. In addition, Q i = ∫
�iq d� are the 

angular moments of the fixed-source, q. The VEF equations are derived by taking the zeroth and first angular moments of 
the transport equation and closing the second moment of the angular flux, P = ∫

� ⊗ �ψ d�, with

P = Eϕ . (4)

By eliminating the current, the VEF equations can be cast as a drift-diffusion equation:
3
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−∇ · 1

σt
∇ · (Eϕ) + σaϕ = Q 0 − ∇ · Q 1

σt
. (5)

In both the first-order form (Eq. (2)) and second-order form (Eq. (5)), the presence of the Eddington tensor inside the diver-
gence leads to diffusion, advection, and reaction-like terms that make applying existing discretization techniques difficult.

The Miften-Larsen transport-consistent boundary conditions [27] are

J · n̂ = 2g + Ebϕ , x ∈ ∂D (6)

where

g(x) =
∫

�·n̂<0

� · n̂ f (x,�)d� (7)

is the incoming partial current computed from the transport boundary inflow function and

Eb =
∫ |� · n̂|ψ d�∫

ψ d�
(8)

is the Eddington boundary factor. This boundary condition is derived by manipulating partial currents and using an analo-
gous nonlinear closure. In equations, with the partial currents defined as J±

n = ∫
�·n̂≷0 � · n̂ ψ d�,

J · n̂ = J+
n + J−

n

= (
J+
n − J−

n

)+ 2 J−
n

=
∫

|� · n̂|ψ d� + 2 J−
n

→ Ebϕ + 2 J−
n ,

(9)

where g in Eq. (6) plays the role of J−
n using the transport equation’s inflow boundary condition.

If the Eddington tensor and boundary factor are known, the VEF equations define the zeroth and first moments of the 
angular flux. In other words, the VEF equations with Miften-Larsen boundary conditions are an equivalent reformulation 
of the transport equation. However, this is a trivial closure in that the solution to the transport equation must already be 
known to define the VEF data. VEF methods rely on the fact that the VEF data are weak functions of the angular flux and 
thus simple iterative schemes can converge rapidly.

Note that when an independent discretization is used for the VEF equations, the discretized VEF scalar flux and VEF 
current will not be equivalent to the zeroth and first angular moments of the discrete angular flux; the two solutions will 
differ on the order of the spatial discretization error. To notationally separate the two scalar flux solutions, we use ϕ (varphi) 
to denote the VEF scalar flux and φ = ∫

ψ d� (phi) as the zeroth moment of the angular flux.
VEF methods seek the solution of the nonlinearly coupled system of equations:

� · ∇ψ + σtψ = σs

4π
ϕ + q , (10a)

−∇ · 1

σt
∇ · (Eϕ) + σaϕ = Q 0 − ∇ · Q 1

σt
, (10b)

where the drift-diffusion form of VEF is used for brevity. Boundary conditions are specified by Eqs. (1b) and (6) for the 
transport and VEF drift-diffusion equation, respectively. Here, the transport equation’s scattering source is now coupled to 
the VEF drift-diffusion equation and the data for the VEF drift-diffusion equation are nonlinearly coupled to the transport 
equation. We have increased the complexity of the problem by adding the VEF scalar flux as an additional unknown and by 
casting the linear transport problem as nonlinear. However, properties of the VEF data allow this nonlinear, coupled system 
to be solved more efficiently than algorithms based on the transport equation alone.

Let

Lψ = � · ∇ψ + σtψ , (11)

R(ψ)ϕ = −∇ · 1

σt
∇ · (E(ψ)ϕ) + σaϕ , (12)

be the streaming and collision operator and VEF drift-diffusion operator, respectively, where (·) indicates a nonlinear de-
pendence on the argument. By linearly eliminating the angular flux, the transport-VEF system is equivalent to

R
(

L−1
( σs

ϕ + q
))

ϕ = Q 0 − ∇ · Q 1
. (13)
4π σt

4
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Applying the inverse of the drift-diffusion operator, we see that the solution of the coupled transport-VEF system is the 
fixed-point:

ϕ = G(ϕ) (14)

where

G(ϕ) = R
(

L−1
( σs

4π
ϕ + q

))−1
(

Q 0 − ∇ · Q 1

σt

)
. (15)

The fixed-point operator G is applied in two stages: 1) solve the transport equation using a scattering source formed from 
the VEF scalar flux and 2) solve the VEF drift-diffusion equation using the VEF data computed from the angular flux from 
stage 1).

The simplest algorithm to solve Eq. (14) is fixed-point iteration:

ϕk+1 = G(ϕk) (16)

where k denotes the iteration index and ϕ0 is an initial guess for the solution. This process is repeated until the difference 
between successive iterates is small enough. Since the Eddington tensor and boundary factor are weak functions of the 
angular flux even this simple iteration strategy often converges rapidly.

Iterative efficiency can be improved with the use of Anderson acceleration. Anderson acceleration defines the next iterate 
as the linear combination of the previous m iterates that minimizes the residual ϕ−G(ϕ). For the storage cost of m previous 
iterates, Anderson acceleration increases the convergence rate and improves robustness. While it is not practical to store 
multiple copies of the angular flux, it is reasonable to expect that a small set of scalar flux-sized vectors can be stored. The 
process of linearly eliminating the transport equation, codified in Eq. (13), allows the Anderson space to be built from the 
much smaller scalar flux-sized vectors only. In the case where a subset of the angular flux unknowns are not eliminated, 
such as when a parallel block Jacobi sweep is used to avoid communication costs or when mesh cycles or reentrant faces 
are present, the solution vector can be augmented with these un-eliminated unknowns so that they are included in the 
Anderson space. This is the nonlinear analog to the ideas used for Krylov-accelerated source iteration [42].

In addition, defining the nonlinear residual as

F (ϕ) = ϕ − G(ϕ) = 0 , (17)

root-finding methods such as Jacobian-free Newton Krylov (JFNK) can be used. JFNK builds a new Krylov space to ap-
proximate the gradient of F at each iteration meaning information across iterations is not kept. JFNK typically required 
significantly more evaluations of G than Anderson-accelerated fixed-point iteration. Thus, we present results using fixed-
point iteration and Anderson-accelerated fixed-point iteration only.

The following sections present the discretizations and solvers needed to efficiently evaluate G numerically.

3. Mesh and finite element preliminaries

3.1. Description of the mesh

Let D ⊂Rdim with dim = 2, 3 be the domain of the problem. Consider the tessellation

D =
⋃

Ke∈T
Ke

with Ke the eth element in the mesh T . Each coordinate of the mesh is represented by a piecewise continuous polynomial. 
In other words, the mesh itself is a member of an 

[
H1(D)

]dim
finite element space. This allows representation of curved 

surfaces and enforces continuity of the mesh coordinates along the interfaces between elements. Fig. 1a depicts a mesh 
of two quadratic, quadrilateral elements where the mesh control points labeled 2, 7, and 12 are shared between the two 
elements to enforce continuity of the shared interior interface between them.

The mesh element Ke is given as the image of the reference element K̂ under an invertible, polynomial mapping Te :
K̂ → Ke where Te ∈ [Pm(K̂ )]dim for simplicial elements (triangles and tetrahedra) or Te ∈ [Qm(K̂ )]dim for tensor product 
elements (quadrilaterals and hexahedra). Here, Pm(K̂ ) is the space of polynomials of total degree at most m in all variables 
and Qm(K̂ ) the space of polynomials of degree at most m in each variable. For example, in two dimensions,

P1(K̂ ) = {1, ξ1, ξ2} (18)

while

Q1(K̂ ) = {1, ξ1, ξ2, ξ1ξ2} . (19)
5
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Fig. 1. Depictions of (a) the continuity of an interior face in a high-order curved mesh and (b) the reference transformation for a non-affine, linear, 
quadrilateral element.

We do not consider the use of Pm(K̂ ) on tensor-product elements for either the mesh or the solution.
The reference element is the unit dim-simplex for simplicial elements (i.e. a triangle with coordinates (0,0), (1,0), and 

(0,1)) or the unit dim-cube K̂ = [0, 1]dim for tensor product elements. Fig. 1b depicts a mesh transformation for a non-affine, 
linear, quadrilateral element. In the remainder of this document, we assume the use of tensor product elements however 
the derivations apply analogously to simplicial elements.

Let ξ ∈ K̂ denote the reference coordinate. The Jacobian matrix of the mapping is

Fe = ∂Te

∂ξ
∈Rdim ×dim . (20)

Furthermore, we define Je = |Fe| as the determinant of the Jacobian matrix. As an example, the transformation, Jacobian 
matrix, and determinant for the transformation depicted in Fig. 1b are

T =
[

hξ1 + αξ2(2ξ1 − 1)

hξ2

]
, F =

[
2αξ2 + h α(2ξ1 − 1)

0 h

]
, J = 2αξ2h + h2 . (21)

The mesh transformations are used to perform integration in reference space using:∫
(·) dx =

∑
Ke∈T

∫
Ke

(·) dx =
∑

Ke∈T

∫
K̂

(·) Jedξ . (22)

For integrands involving gradients, the chain rule implies that

∇x = F−T ∇ξ . (23)

Integration over surfaces is performed over the dim−1 dimensional reference element using the transformed element of 
surface area. In this document, integration over the domain D is implicitly performed using numerical quadrature and the 
relations in Eqs. (22) and (23). Finally, the characteristic mesh length, h, is computed with

he =
⎛⎜⎝∫

K̂

Je dξ

⎞⎟⎠
1/dim

, (24)

with h = maxKe∈T he .

3.2. Finite element spaces

On each element, we will seek solutions to the transport and VEF drift-diffusion equations in the space of polynomials 
mapped from the reference element K̂ defined by

Qp(Ke) = {u = û ◦ T−1
e : û ∈ Qp(K̂ )} , (25)

where û indicates a function defined on the reference element. The delineation between Q and Q is required when non-
affine1 mesh transformations are used. In such a case, u = û ◦ T−1

e /∈ Qp(Ke) even if û ∈ Qp(K̂ ). That is, the solution can 

1 Examples of non-affine transformations include mapping the reference square to a trapezoid or any high-order, curved element.
6
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be non-polynomial due to the composition with the inverse of the element transformation. For example, the inverse of the 
transformation in Fig. 1b is

T−1 =
[

hx1+αx2
h2+2αx2

x2/h

]
(26)

which is non-polynomial in the first coordinate.
The degree-p DG finite element space is:

Y p = {u ∈ L2(D) : u|Ke ∈Qp(Ke) , ∀Ke ∈ T } (27)

so that each function u ∈ Y p is a piecewise polynomial mapped from the reference element with no continuity enforced 
between elements. Its vector-valued analog is

W p = {v ∈ [L2(D)]dim : v ∈ [Qp(Ke)]dim , ∀Ke ∈ T } , (28)

which simply uses the scalar DG space for each component of the vector. We will also need the discrete H1(D), or contin-
uous finite element space, defined as:

V p = {u ∈ H1(D) : u|Ke ∈Qp(Ke) , ∀Ke ∈ T } . (29)

Here, u ∈ V p is a piecewise continuous mapped polynomial.
For each of the above spaces, we allow the polynomial degree p to be chosen independently of m, the polynomial degree 

used to describe the mesh, and thus support sub-, iso-, and super-parametric approximations. For our target application of 
Lagrangian hydrodynamics, the polynomial degree of the mesh is defined by the finite element representation of the fluid 
velocity. Typically, thermodynamic variables are approximated with polynomials one degree lower than the polynomials 
used for the fluid velocity. That is, for degree-p transport, the mesh will be degree m = p + 1, leading to a sub-parametric 
approximation for the radiation component of the multiphysics simulation.

A nodal basis for the element-local polynomial space is used. For a degree-p element, let ξi denote the (p + 1) Gauss-
Lobatto or Gauss-Legendre points in the interval [0, 1]. The (p + 1)dim points ξ i on the unit cube [0, 1]dim are given by the 
dim-fold Cartesian product of the one-dimensional points. Let �i denote the Lagrange interpolating polynomial satisfying 
�i(ξ j) = δi j where δi j is the Kronecker delta. The set of functions {�i} form a basis for the space Qp(K̂ ). The DG and H1(D)

finite element spaces are built element-by-element from this local basis.
Note that the Gauss-Lobatto points include the interval end points while the Gauss-Legendre points do not. Thus, using 

Gauss-Lobatto points yields both points on the interior and the boundary of the element while using Gauss-Legendre leads 
to points on the interior of the element only. These are referred to as closed and open bases, respectively. In the case of DG, 
no continuity between elements is enforced so it is acceptable to use either an open or closed basis. Both Gauss-Lobatto 
and Gauss-Legendre have the required properties to be accurate in the limit p → ∞ so the choice of Gauss-Lobatto versus 
Gauss-Legendre is typically dictated by other aspects of the overall algorithm such as preconditioners. The basis formed 
from the Gauss-Legendre points has the beneficial property of diagonal mass matrices on affine meshes, while the basis 
formed from Gauss-Lobatto points typically leads to sparser global systems since closed bases couple fewer unknowns on 
interior faces. A closed basis is required for H1(D) finite element spaces to enable the strong enforcement of continuity 
between elements.

3.3. Mathematical notation

It is helpful to define the “broken” gradient, denoted ∇h , obtained by applying the gradient locally on each element. That 
is,

(∇hu) |Ke = ∇(
u|Ke

)
, ∀Ke ∈ T . (30)

This distinction is important since for u ∈ Y p , ∇u is not well-defined since u may be discontinuous across element interfaces. 
However, ∇hu is well-defined since u is locally differentiable on each element.

We will use the following notation to describe the jump and average of a discontinuous function along an interior mesh 
face. Let 
 be the set of all unique faces in the mesh and 
0 = 
 \ ∂D the set of unique interior faces. Additionally, define 

b = 
 ∩ ∂D as the set of faces on the boundary so that 
 = 
0 ∪ 
b . We define n̂K as the outward unit normal to element 
K . On an interior face F ∈ 
0 between elements K1 and K2, we use the convention that n̂ is the unit vector perpendicular 
to the shared face K1 ∩ K2 pointing from K1 to K2 (see Fig. 2). On such an interior face, the jump, �·�, and average, {{·}}, are 
defined as

�u� = u1 − u2 , {{u}} = 1

2
(u1 + u2) , on F ∈ 
0 , (31)

where ui = u|∂ Ki with analogous definitions for vectors.
7
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Fig. 2. A depiction of a discontinuous, piecewise quadratic solution across two quadrilateral elements. The normal vector, n̂, is defined as pointing from K1

to K2 along the face between K1 and K2.

Note that in contrast to the notation of [2], our jump operator does not change the rank of its argument: the jump of 
a scalar is a scalar and the jump of a vector is a vector. Consequently, our notation is not invariant under element renum-
bering, since flipping the ordering of the elements negates the value of the jump. However, the bilinear and linear forms 
presented in this paper always pair the jump with another normal-dependent term. The negation of the jump induced by 
swapping the element ordering is then balanced by flipping the orientation of the normal vector, and so the discretizations 
under consideration are in fact invariant with respect to the element ordering.

On the boundary of the domain, we set the jump and average to

�u� = u , {{u}} = u , on F ∈ 
b , (32)

and likewise for vector-valued functions on the boundary. A straightforward computation shows that∑
K∈T

∫
∂ K

u v · n̂K ds =
∫



�
u v · n̂

�
ds =

∫



�u�{{v · n̂
}}

ds +
∫

0

{{u}}�
v · n̂

�
ds . (33)

We refer to this as the “jumps and averages identity”. The restriction of the integration to interior faces for the second term 
in the last equality is consistent with the notation of [2] and is used so that only one term contributes on the boundary of 
the domain.

Finally, we refer to a function as “single-valued” on an interior face if its values obtained from approaching from each 
side of the face are identical so that

�u� = 0 , {{u}} = u . (34)

Note in particular that the jump and average operators are single-valued.

4. Transport discretizations

In this work, we assume the transport equation is discretized with the Discrete Ordinates (SN ) angular model and an 
arbitrary-order Discontinuous Galerkin (DG) spatial discretization compatible with curved meshes (e.g. [39,1]). In SN , the 
transport equation is collocated at discrete angles, �d , and integration is numerically approximated using a suitable angular 
quadrature rule {�d, wd}N�

d=1 on the unit sphere. The VEF data are then

E(x) =
∑N�

d=1 wd �d ⊗ �d ψd(x)∑N�

d=1 wdψd(x)
, (35a)

Eb(x) =
∑N�

d=1 wd |�d · n̂|ψd(x)∑N�

d=1 wdψd(x)
, (35b)

where ψd(x) = ψ(x, �d) is the discrete angular flux in direction �d . With degree-p DG in space, the angular flux in each 
discrete direction �d is a member of Y p . Through the standard finite element interpolation procedure, the Eddington tensor 
and boundary factor in Eq. (35) can be evaluated at any location in the mesh. Note that it is important to interpolate the 
8
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numerator and denominator of the VEF data independently. That is, the boundary factor and each component of the Ed-
dington tensor are represented as degree-p improper rational polynomials on each element. Improper rational polynomials 
cannot be integrated exactly with numerical quadrature. Thus, bilinear and linear forms involving VEF data will possess in-
tegration error. In practice, we have seen that the optimal order of convergence is maintained despite this inexact numerical 
integration. This observation is corroborated by Ciarlet [43, §4.1] which presents an analysis of the stability and accuracy of 
the general finite element method when inexact numerical integration is used.

Defining

P(x) =
∑

d

wd �d ⊗ �d ψd(x) (36)

as the discrete second moment of the angular flux and using the quotient rule, the local divergence of the Eddington tensor

∇h · E = (∇h · P)φ − P · ∇hφ

φ2
(37)

is well-defined assuming φ > 0. Here, the divergence of a second-order tensor is the vector formed by taking the divergence 
of each of the columns of the tensor.

We restrict our attention to problems where ψ ≥ δ > 0 inside the domain, for some δ. This assumption is reasonable 
for our applications but may be violated in shielding or deep penetration problems. Application of a positivity-preserving 
negative flux fixup then ensures that φ is bounded away from zero, so that E, Eb , and ∇h · E are all bounded. Thus, through 
SN angular quadrature and finite element interpolation, the Eddington tensor, boundary factor, and the local divergence 
of the Eddington tensor can be evaluated at any point in any element of the mesh. This completes the definition of the 
connection between the discrete transport equation and the VEF drift-diffusion equation. Note that since the angular flux is 
generally discontinuous across interior mesh interfaces, the Eddington tensor and its divergence also will be. Thus, we will 
carefully design the discretization of the VEF drift-diffusion equation to accommodate discontinuous data.

The VEF scalar flux connects with the transport equation in the scattering source. To support generality, we assume that 
the finite element space for the VEF scalar flux and the finite element space for the angular flux are different. The scattering 
source is then constructed using a mixed-space mass matrix that has test functions in the space for the angular flux and 
trial functions in the space for the VEF scalar flux.

5. Derivation of DG VEF

In this section, we adapt the derivation of the unified framework for DG methods designed for the Poisson equation in 
[2] to the VEF equations. This enables the use of any of the DG methods described there. Arnold et al. [2] derive a family of 
DG methods for:

q = ∇u , (38a)

−∇ · q = f , (38b)

with Dirichlet boundary conditions. The present goal is to adapt their derivation to the VEF equations:

∇ · (Eϕ) + σt J = Q 1 , (39a)

∇ · J + σaϕ = Q 0 , (39b)

with the Robin style boundary conditions given in Eq. (6). We will see significant differences in the final equation since 
the Eddington tensor is inside the divergence. Additionally, the presence of a right-hand side in the first moment equation 
as well as non-unit coefficients introduce further complications. We will then derive analogs of the interior penalty (IP), 
second method of Bassi and Rebay (BR2), and minimal dissipation local Discontinuous Galerkin (MDLDG) variants. Finally, 
we will show how to extract a continuous finite element method from this framework.

5.1. Adaption of the unified framework to VEF

We seek the VEF scalar flux in the degree-p DG finite element space Y p and the current in the degree-p, vector-valued 
DG finite element space W p . The weak form is then: find (ϕ, J ) ∈ Y p × W p such that for each K ∈ T :∫

∂ K

v · Êϕn̂K ds −
∫
K

∇v|K : Eϕ dx +
∫
K

σt v · J dx =
∫
K

v · Q 1 dx , ∀v ∈ [Qp(K )]dim , (40a)

∫
u Ĵ · n̂K ds −

∫
∇u|K · J dx +

∫
σa uϕ dx =

∫
u Q 0 dx , ∀u ∈Qp(K ) , (40b)
∂ K K K K

9
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where the numerical fluxes Êϕ and Ĵ are approximations of Eϕ and J on the boundaries of the elements in the mesh. In 
the above, integration by parts was applied on each element so that only local differentiation on each element is required 
for functions in Y p and W p . We have grouped the product Eϕ as the numerical flux to mimic the integration by parts of 
the product of a tensor and vector. Here, the gradient of a vector is

(∇v)i j =
(

∂ v i

∂x j

)
∈Rdim ×dim (41)

and

A : B =
dim∑
i=1

dim∑
j=1

Ai jBi j , A,B ∈Rdim ×dim (42)

is the scalar contraction of two tensors. Note that if E = 1
3 I then

∇v : E = 1

3
∇ · v (43)

and the symmetric weak form for radiation diffusion can be recovered.
Summing the zeroth moment over all elements:∫




�u�{{ Ĵ · n̂
}}

ds +
∫

0

{{u}}�
Ĵ · n̂

�
ds −

∫
∇hu · J dx +

∫
σa uϕ dx =

∫
u Q 0 dx , (44)

where the jumps and averages identity (Eq. (33)) was used along with the definition of the broken gradient from Eq. (30). 
We will now use the discrete first moment to determine a functional form for J . Integrating by parts locally over element 
K , we have that∫

K

∇v|K : Eϕ dx =
∫
∂ K

v · Eϕn̂K ds −
∫
K

v · ∇ · (Eϕ)|K dx . (45)

Here, a numerical flux is not required since the integration by parts is performed on the gradient restricted to each element 
K . The first moment’s weak form on each element becomes:∫

∂ K

v · (Êϕn̂K − Eϕn̂K
)

ds +
∫
K

v · ∇ · (Eϕ)|K dx +
∫
K

σt v · J dx =
∫
K

v · Q 1 dx , ∀v ∈ [Qp(K )]dim . (46)

Summing over all elements and using the jumps and averages identity, the weak form for the first moment is:∫



{{v}} · �Êϕn̂ − Eϕn̂
�

ds +
∫

0

�v� · {{Êϕn̂ − Eϕn̂
}}

ds

+
∫

v · ∇h · (Eϕ) dx +
∫

σt v · J dx =
∫

v · Q 1 dx , ∀v ∈ W p , (47)

where ∇h · (Eϕ) is evaluated as ∇h · (Eϕ) = E∇hϕ + (∇h · E)ϕ , and the term ∇h · E is computed using Eq. (37).
We now wish to write all terms as volumetric integrals so that a functional form for the current can be found. To that 

end, define lifting operators r(τ ) ∈ W p and �(χ) ∈ W p such that∫
σt v · r(τ )dx = −

∫



{{v}} · τ ds , ∀v ∈ W p , (48a)

∫
σt v · �(χ)dx = −

∫

0

�v� · χ ds , ∀v ∈ W p , (48b)

where τ and χ are vector functions that are singled-valued on 
0. Note that the lifting operators are finite element grid 
functions just as the current is and that the left hand sides are simply the W p total interaction mass matrix. Since W p is 
piecewise discontinuous, the W p mass matrix is block-diagonal by element and thus the systems of equations corresponding 
to Eqs. (48a) and (48b) are amenable to efficient direct factorization (see Appendix A).

Setting τ = �
Êϕn̂ − Eϕn̂

�
and χ = {{

Êϕn̂ − Eϕn̂
}}

and using the definitions of the lifting operators, Eq. (47) can be 
written entirely in terms of volumetric integrals as:
10
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∫
σt v · J dx =

∫
σt v ·

[
1

σt

(
Q 1 − ∇h · (Eϕ)

)+ r
(�

Êϕn̂ − Eϕn̂
�)+ �

({{
Êϕn̂ − Eϕn̂

}})]
dx (49)

for all v ∈ W p . Subtracting the right hand side and setting the integrand to zero implies that

J = 1

σt

(
Q 1 − ∇h · (Eϕ)

)+ r
(�

Êϕn̂ − Eϕn̂
�)+ �

({{
Êϕn̂ − Eϕn̂

}})
. (50)

Observe that the above represents the element-local strong form of the current, 1
σt

(
Q 1 − ∇h · (Eϕ)

)
found by analytically 

eliminating the current, with additional terms that capture the effect of the numerical fluxes. In other words, we have 
derived the discrete elimination of the current.

Using this discrete form for the current and the definitions of the lifting operators to convert from volumetric integrals 
back to surface integrals, the zeroth moment becomes:∫




�u�{{ Ĵ · n̂
}}

ds +
∫

0

{{u}}� Ĵ · n̂
�

ds +
∫



{{∇hu

σt

}}
· �Êϕn̂ − Eϕn̂

�
ds

+
∫

0

�∇hu

σt

�
· {{Êϕn̂ − Eϕn̂

}}
ds +

∫
∇hu · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

=
∫

u Q 0 dx +
∫

∇hu · Q 1

σt
dx , ∀u ∈ Y p . (51)

On boundary faces, we apply the Miften-Larsen boundary conditions by setting

Ĵ · n̂ = 2g + Ebϕ , Êϕn̂ = Eϕn̂ , on F ∈ 
b . (52)

All the methods we consider use so-called conservative numerical fluxes such that�
Ĵ · n̂

� = 0 ,
{{

Ĵ · n̂
}}= Ĵ · n̂ , on F ∈ 
0 , (53a)�

Êϕn̂
� = 0 ,

{{
Êϕn̂

}}= Êϕn̂ , on F ∈ 
0 . (53b)

Using the boundary conditions and the assumption of conservative numerical fluxes, Eq. (51) becomes:∫

b

Eb uϕ ds +
∫

0

�u� Ĵ · n̂ ds −
∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds

+
∫

0

�∇hu

σt

�
· {{Êϕn̂ − Eϕn̂

}}
ds +

∫
∇hu · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

=
∫

u Q 0 dx +
∫

∇hu · Q 1

σt
dx − 2

∫

b

u g ds , ∀u ∈ Y p . (54)

Equation (54) defines a family of DG methods. That is, through the specification of the numerical fluxes on interior faces, 
analogs of all the methods listed in [2] can be derived.

5.2. Specification of numerical fluxes

All the methods we consider use numerical fluxes of the form

Ĵ · n̂ =
{{

1

σt

(
Q 1 − ∇h · (Eϕ)

) · n̂

}}
+ α(ϕ) , on 
0 , (55a)

Êϕn̂ = {{
Eϕn̂

}}+ θ(ϕ) , on 
0 , (55b)

where α(ϕ) and θ(ϕ) are single-valued functions whose purpose are to ensure a stable discretization. The IP, BR2, and LDG 
methods differ only in the choice of α(ϕ) and θ(ϕ). With these numerical fluxes, Eq. (54) becomes:∫


b

Eb uϕ ds +
∫

0

�u�α(ϕ)ds −
∫

0

�u�{{ 1

σt
∇h · (Eϕ) · n̂

}}
ds −

∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds

+
∫ �∇hu

σt

�
· θ(ϕ)ds +

∫
∇hu · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

0

11
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=
∫

u Q 0 dx +
∫

∇hu · Q 1

σt
dx −

∫

0

�u�{{ Q 1 · n̂

σt

}}
ds − 2

∫

b

u g ds , ∀u ∈ Y p . (56)

Recall that this form has already applied boundary conditions according to Eq. (52). In other words, the above corresponds 
to a DG scheme with the following numerical fluxes:

Ĵ · n̂ =
{{{

1
σt

(
Q 1 − ∇h · (Eϕ)

) · n̂
}}

+ α(ϕ) , on 
0

2g + Ebϕ , on 
b

, (57a)

Êϕn̂ =
{{{

Eϕn̂
}}+ θ(ϕ) , on 
0

Eϕn̂ , on 
b
. (57b)

5.2.1. Interior penalty
An interior penalty (IP)-like method uses

α(ϕ) = κ �ϕ� , θ(ϕ) = 0 , (58)

where κ is the penalty parameter. The full IP weak form is then: find ϕ ∈ Y p such that∫

b

Eb uϕ ds +
∫

0

κ �u� �ϕ� ds −
∫

0

�u�{{ 1

σt
∇h · (Eϕ) · n̂

}}
ds −

∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds

+
∫

∇hu · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

=
∫

u Q 0 dx +
∫

∇hu · Q 1

σt
dx −

∫

0

�u�{{ Q 1 · n̂

σt

}}
ds − 2

∫

b

u g ds , ∀u ∈ Y p . (59)

IP methods require that κ ∝ σ−1
t p2/h in order to guarantee stability as the mesh is refined. The constant of proportionality 

is a user-defined parameter that is often problem dependent. For example, we will see that severely distorted meshes 
require the penalty parameter to be increased in order for the IP VEF method to be stable. We note that the penalty bilinear 
form, given by∫


0

κ �u� �ϕ� ds , (60)

is symmetric positive definite and has a nullspace corresponding to functions that are continuous on the interior of the 
domain. A large enough penalty parameter causes the penalty bilinear form to dominate the negative definite bilinear 
forms in the discretization making the overall system positive definite. However, a large penalty parameter also increases 
the relative dominance of the penalty bilinear form’s nullspace. This has the effect of 1) regularizing the solution towards 
continuous functions such that the limit κ → ∞ would yield a continuous solution and 2) increasing the linear system’s 
condition number causing the effectiveness of standard preconditioners (e.g. AMG) to degrade as the mesh is refined. This 
sub-optimal performance was the motivation for the development of the uniform subspace correction preconditioner [3]
which achieves iterative convergence independent of the mesh size, polynomial order, and penalty parameter. In §6, the 
analysis of this preconditioner is extended to the non-symmetric case of the VEF equations.

5.2.2. BR2
The second method of Bassi and Rebay (BR2) uses an alternative penalty term. Let ρ f (ω) ∈ W p be a face-local lifting 

operator defined by∫
v · ρ f (ω)dx = −

∫
f

{{
v · n̂

}}
ω ds , ∀v ∈ W p , on f ∈ 
0 . (61)

Here, ω is a scalar function that is single-valued on the interior face f . Note that the integration on the left hand side is 
over the entire domain while the right hand side is localized to a single interior face. This means the right hand side, and 
thus ρ f (ω), will be non-zero only for DOFs in elements that share the face f .

A BR2-like discretization sets

α(ϕ) = −η
{{

ρ f (�ϕ�) · n̂
}}

, on f ∈ 
0 , θ(ϕ) = 0 , (62)

so that the relevant term is
12
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∫

0

�u�α(ϕ)ds = −
∑
f ∈
0

∫
f

η �u�{{ρ f (�u�) · n̂
}}

ds

=
∑
f ∈
0

∫
ηρ f (�u�) · ρ f (�ϕ�)dx .

(63)

The BR2 DG VEF discretization is then: find ϕ ∈ Y p such that∫

b

Eb uϕ ds −
∫

0

�u�{{ 1

σt
∇h · (Eϕ) · n̂

}}
ds −

∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds

+
∑
f ∈
0

∫
ηρ f (�u�) · ρ f (�ϕ�)dx +

∫
∇hu · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

=
∫

u Q 0 dx +
∫

∇hu · Q 1

σt
dx −

∫

0

�u�{{ Q 1 · n̂

σt

}}
ds − 2

∫

b

u g ds , ∀u ∈ Y p . (64)

Observe that the BR2 and IP discretizations differ only in the stabilization term. The BR2 stabilization bilinear form, given 
by Eq. (63), is similar in function to the IP penalty bilinear form in Eq. (60) in that it ensures the resulting algebraic system 
is positive definite, has the effect of regularizing toward continuous solutions, and increases the condition number of the 
algebraic system such that the specialized preconditioner discussed in §6 is required. However, due to the use of the more 
expensive local lifting operators, the BR2 stabilization parameter, η, does not need to scale with the mesh size, polynomial 
order, or material parameters. Instead, η can be prescribed by the geometric properties of the element types in the mesh 
alone. In particular, it has been shown for the model problem that stability is guaranteed when, on each F = K1 ∩ K2 ∈ 
0,

η ≥ max
K∈[K1,K2]n(K ) , (65)

where n(K ) is the number of faces in element K [44, Prop. 1]. For example, η = 3 and η = 4 lead to stable discretiza-
tions on meshes composed of triangular and quadrilateral elements, respectively. Thus, the BR2 discretization avoids the 
ambiguity associated with tuning the penalty parameter. This comes at the cost of a more expensive assembly procedure 
compared to IP. However, we stress that the BR2 stabilization term can still be assembled locally on each face in the mesh. 
Implementation details associated with the BR2 local lifting operators are provided in Appendix A.

5.2.3. Local discontinuous Galerkin
Finally, we consider the local Discontinuous Galerkin (LDG) method. In general, LDG uses the following numerical fluxes:

Ĵ · n̂ = {{
J · n̂

}}+ β
�

J · n̂
� + κ �ϕ� , (66a)

Êϕn̂ = {{
Eϕn̂

}}− β
�

Eϕn̂
�

, (66b)

where J is defined as the discrete elimination of the current derived in Eq. (50). The scalar parameter β can be defined as

β =
{

1/2 , w · n̂ > 0

−1/2 , w · n̂ < 0
, (67)

where w is any constant, non-zero vector. This choice imposes an arbitrary upwinding on the current that is balanced by an 
opposing choice for the scalar flux. With this choice of β , the LDG method is stable for any κ ≥ 0; if κ ≡ 0, the method is 
referred to as the minimal dissipation LDG (MDLDG) method [45]. Using the numerical flux for the scalar flux, the discrete 
current simplifies to

J = 1

σt

(
Q 1 − ∇h · (Eϕ)

)− r0
(�

Eϕn̂
�)− �

(
β

�
Eϕn̂

�)
, (68)

where r0(τ ) ∈ W p is another lifting operator defined by∫
σt v · r0(τ )dx = −

∫

0

{{v}} · τ ds , ∀v ∈ W p , (69)

that differs from r(τ ) only in the region of integration on the right hand side. The LDG method is then equivalent to setting
13
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α(ϕ) = −{{
r0
(�

Eϕn̂
�) · n̂ + �

(
β

�
Eϕn̂

�) · n̂
}}

+ β

�
1

σt

(
Q 1 − ∇h · (Eϕ)

) · n̂ − r0
(�

Eϕn̂
�) · n̂ − �

(
β

�
Eϕn̂

�) · n̂

�
+ κ �ϕ� , (70a)

θ(ϕ) = −β
�

Eϕn̂
�

. (70b)

We then have that∫

0

�u�α(ϕ)ds =
∫

0

β �u��
Q 1 · n̂

σt

�
ds −

∫

0

β �u��
1

σt
∇h · (Eϕ) · n̂

�
ds

+
∫ (

ρ0(�u�) + λ(β �u�)) · (r0
(�

Eϕn̂
�)+ �

(
β

�
Eϕn̂

�))
dx +

∫

0

κ �u� �ϕ� ds (71)

where ρ0(ω), λ(υ) ∈ W p such that∫
v · ρ0(ω)dx = −

∫

0

{{
v · n̂

}}
ω ds , ∀v ∈ W p , (72)

∫
v · λ(υ)dx = −

∫

0

�
v · n̂

�
υ ds , ∀v ∈ W p , (73)

are analogs of r0(τ ) and �(χ), respectively, that do not include the total interaction cross section in the left hand side mass 
matrices and have scalar arguments. The LDG VEF discretization is then: find ϕ ∈ Y p such that∫


b

Eb uϕ ds +
∫

0

κ �u� �ϕ� ds −
∫

0

�u�{{ 1

σt
∇h · (Eϕ) · n̂

}}
ds −

∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds

+
∫ (

ρ0(�u�) + λ(β �u�)) · (r0
(�

Eϕn̂
�)+ �

(
β

�
Eϕn̂

�))
dx

+
∫

∇hu · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

=
∫

u Q 0 dx +
∫

∇hu · Q 1

σt
dx −

∫

0

�u�({{ Q 1 · n̂

σt

}}
+ β

�
Q 1 · n̂

σt

�)
ds − 2

∫

b

u g ds , ∀u ∈ Y p . (74)

The advantage of LDG (with the choice of β given in Eq. (67)) is that any κ ≥ 0, including κ = 0, results in a stable 
discretization, avoiding the need to tune a penalty parameter. Additionally, LDG offers the flexibility to control the amount 
of solution regularization that occurs. For example, setting κ ∝ σ−1

t p2/h would provide numerical diffusion comparable 
to IP and BR2 whereas setting κ = 0 provides the so-called minimally dissipative solution. If κ is chosen independent of 
the mesh size and polynomial order, standard preconditioners for discretizations of elliptic problems, such as AMG, will be 
effective. Otherwise, the specialized preconditioner in §6 must be used. These advantages come with the cost that the LDG 
stabilization term has a non-compact stencil that connects neighbors of neighbors, leading to less sparsity compared to the 
linear systems associated with the IP and BR2 methods. The details of assembling the LDG stabilization terms are provided 
in Appendix A.

5.3. Continuous finite element discretization of VEF

We now show how a continuous finite element (CG) discretization of the VEF drift-diffusion equation can be extracted 
from the DG framework presented above. An approximate inversion of this operator is one stage of the subspace correction 
preconditioner described in §6 that is used to efficiently solve the IP and BR2 VEF discretizations. This CG operator is also 
a VEF method itself and represents an extension of the algorithm in [13] to multiple dimensions, high-order, and curved 
meshes. A CG VEF method has fewer unknowns than an analogous DG method and requires simpler methods to solve the 
resulting linear system. We will show that this CG discretization has similar accuracy to DG and does not degrade conver-
gence of the fixed-point iteration even in the asymptotic thick diffusion limit. However, it is unclear if using a continuous 
finite element space would negatively impact robustness and stability in the larger radiation-hydrodynamics multiphysics 
setting.

Let u, ϕ ∈ V p , the degree-p continuous finite element space, then

�u� = 0 , �ϕ� = 0 , on F ∈ 
0 . (75)
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However, since the Eddington tensor is still discontinuous, we have that

�
Eϕn̂

� = �
En̂

�
ϕ . (76)

Note that, for u ∈ V p , ∇u = ∇hu ∈ W p . In other words, while u ∈ V p is continuous ∇u is not and, due to the continuity 
properties of functions in V p , the gradient and broken gradient are equivalent [46, Prop. 3.2.1]. Thus, by starting from the 
DG VEF discretization and assembling onto V p , we arrive at a CG VEF discretization of the form: find ϕ ∈ V p such that∫


b

Eb uϕ ds −
∫

0

{{∇u

σt

}}
· �En̂

�
ϕ ds +

∫
∇u · 1

σt
∇h · (Eϕ) dx +

∫
σa uϕ dx

=
∫

u Q 0 dx +
∫

∇u · Q 1

σt
dx − 2

∫

b

u g ds , ∀u ∈ V p . (77)

Observe that in the thick diffusion limit, where E = 1
3 I and Eb = 1/2, a CG discretization of radiation diffusion with Marshak 

boundary conditions arises since �En̂� = 0 and 1
σt

∇h · (Eϕ) = 1
3σt

∇ϕ .

6. Subspace correction preconditioners

In this section, we develop effective and efficient preconditioners for the linear systems resulting from the DG discretiza-
tions of the VEF equations developed in §5. These preconditioners are built using the additive Schwarz or parallel subspace 
correction framework [47,48]. We will first discuss the preconditioning of symmetric positive-definite DG discretizations of 
diffusion equations, and then extend the results to the non-symmetric VEF discretizations. We begin by reviewing some 
preliminary results from the domain decomposition literature [49].

Remark 1. In what follows, we will be interested in proving estimates that are independent of discretization parameters 
such as mesh size h, polynomial degree p, and penalty parameter κ . For simplicity of notation, we will write a � b to mean 
a ≤ Cb, for some constant C , independent of h, p, and κ . Similarly, a � b is used to mean b � a, and a ≈ b means that both 
a � b and b � a.

We consider a decomposition of the DG finite element space Y p as the sum of subspaces

Y p = Y1 + Y2 + · · · + Y J . (78)

Let A(u, v) denote a symmetric positive definite bilinear form, and let A denote the corresponding operator, i.e.

A(u, v) = (Au, v), (79)

where (· , ·) is the standard L2(D) inner product. For example, we can take A(u, v) to be one of the standard DG discretiza-
tions of the diffusion equation as presented in [2]. Let A j denote the restriction of A to the subspace Y j , and let P j be the 
elliptic projections onto Y j . That is,

A(P ju, v j) = A(u, v j) for all v j ∈ Y j. (80)

Similarly, define the L2 projections onto Y j by

(Q ju, v j) = (u, v j) for all v j ∈ Y j. (81)

It can be seen that

A j P j = Q j A,

and so P j = A−1
j Q j A. Inverting the local problems A j exactly may be computationally infeasible, and so we can replace A−1

j

with an approximate inverse Ã−1
j such that Ã−1

j A j is uniformly well-conditioned. Then, we make use of the operators T j =
Ã−1

j Q j A. The preconditioned operator T is defined as the sum of the subspace operators, T = ∑ J
j=1 T j . The corresponding 

preconditioner is given by 
∑ J

j=1 T −1
j Q j . Under certain conditions on the subspaces Y j , the preconditioned system T =∑ J T −1 Q j A is well-conditioned.
j=1 j
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6.1. Decomposition into conforming and interface subspaces

At this point, we consider the particular decomposition of Y p into the sum of two subspaces (cf. [50]),

Y p = Y B + V p, (82)

where we recall that V p ⊂ Y p consists of functions that are globally continuous, i.e. V p = Y p ∩ H1(D). Y B consists of 
functions that vanish at all element-interior Gauss-Lobatto points (but which may take arbitrary values at element-boundary 
Gauss-Lobatto points). This decomposition is closely related to the idea of preconditioning discontinuous Galerkin discretiza-
tions with a related continuous Galerkin discretization [51–53]. It is easy to see that an arbitrary function w ∈ Y p has a 
(non-unique) decomposition as w = wb + v , wb ∈ Y B , v ∈ V p . Adopting the above notation, let P B and P V denote the 
elliptic projections onto Y B and V p respectively.

We recall some results concerning this space decomposition from [50,54]. Let A denote here the standard interior penalty 
DG discretization of the diffusion equation.

Proposition 1 (Cf. [50], Theorem 1). The space decomposition Y p = Y B + V p is stable, i.e. for any w ∈ Y p, there exists a decomposition 
w = wb + v, wb ∈ Y B , v ∈ V p such that

A(wb, wb) +A(v, v) � A(w, w). (83)

As a consequence of Lions’ lemma [55], we have

A(w, w) � A(P B w, w) +A(P V w, w). (84)

An upper bound on A(P vh, vh), where P = P B + P V is obtained by noting that the operators P B and P V are projections.

Corollary 1. The preconditioned operator P = P B + P V is uniformly well-conditioned.

Notice that the operator A restricted to the continuous space V p corresponds to a standard H1 discretization of the 
diffusion equation. As a result, the local solver A−1

V can be replaced with any uniform preconditioner Ã−1
V for diffusion 

problems to obtain the approximate operator T V . For instance, we can take Ã−1
V to be one V-cycle of hypre’s BoomerAMG 

[56].
It remains to find an approximate solver for the operator AB . Suppose the mesh T is conforming, and the space Y p has 

constant polynomial degree. Let Ã−1
B be the simple point Jacobi preconditioner applied to AB . Then, we have the following 

result from [50].

Theorem 1. Let T B = Ã−1
B Q B A and let T V = Ã−1

V Q V A, where Ã−1
B is the point Jacobi preconditioner for AB , and Ã−1

V represents one 
V-cycle of BoomerAMG (or any other uniform preconditioner for the H1-conforming discretization of diffusion). Then, the precondi-
tioned operator T = T B + T V is uniformly well-conditioned.

Remark 2. When the mesh T is nonconforming (e.g. as the result of adaptive mesh refinement), or when the DG finite 
element space Y p has variable polynomial degrees, then a more sophisticated subspace decomposition is required [3]. In 
this case, the boundary subspace Y B is decomposed into a collection of smaller subspaces defined on each non-conforming 
edge. Each of these small subspaces is solved independently, giving rise to a block Jacobi-type method. In the case that the 
mesh is conforming and the polynomial degree is constant, this construction reduces to the point Jacobi approximate solver 
described above.

6.2. Symmetric VEF discretizations

We extend the analysis of the above preconditioners to the family of DG discretizations of the VEF equations given by 
Eq. (56). We first treat the simple case where E = 1

3 I. In this case, the system defined by Eq. (56) is symmetric and positive-
definite. These results can also be extended to the more general case of constant Eddington tensor; in this case, the results 
will depend on the spectrum of E. Let B(u, v) denote the bilinear form defined by Eq. (56). We consider the subspace 
correction preconditioner defined above, and seek to extend Theorem 1 to this modified system. In order to do this, we 
must first show that the decomposition Y p = Y B + V p is stable with respect to the modified bilinear form B. To do this, 
it suffices to show that the norm induced by B is equivalent to the norm induced by A. We first note that the standard 
interior penalty DG discretization of the definite Helmholtz operator σau − ∇ · (σ−1

t ∇u) satisfies the following bounds (cf. 
[50,57])
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A(u, v) � |||u||||||v|||,
A(u, u) � |||u|||2,

where the mesh-dependent DG norm ||| · ||| is defined by

|||u|||2 = ‖σau‖2
0 + ‖σ−1/2

t ∇hu‖2
0 + p2

h
‖σ−1/2

t �u�‖2
0,
.

We first consider the interior penalty version of the VEF discretization, given by Eq. (59). It is straightforward to see that B
satisfies the same inequalities,

B(u, v) � |||u||||||v|||,
B(u, u) � |||u|||2.

The extension to BR2 and LDG discretizations follows from estimates of the lifting operators ρ g , r, and �, which are consid-
ered in [58,57,54].

As a consequence of this equivalence in norms, we expect the parallel subspace preconditioner described above to result 
in a uniformly well-conditioned operator, independent of mesh size h, polynomial degree p (as well as the size of the 
interior penalty stabilization penalty parameter κ ).

6.3. Non-symmetric VEF discretizations

The case of more general Eddington tensor E is more difficult to treat because the resulting bilinear form B is no longer 
symmetric. We analyze the convergence of the preconditioned GMRES iterative method, with the preconditioner defined 
by the parallel subspace correction procedure described above. The rate of convergence of the GMRES method applied to a 
non-symmetric, but positive definite operator is controlled by the ratio of the minimal eigenvalue of the symmetric part of 
the operator to the norm of the operator [59]. We wish to show that this ratio remains independent of the discretization 
parameters, and therefore that the number of GMRES iterations required to converge remains uniformly bounded. To do 
this, recalling the literature on additive Schwarz methods for non-symmetric problems (cf. [60,61]), we must show that the 
non-symmetric part of the operator is small in some sense.

In order to simplify the analysis, we consider a slightly modified VEF discretization that results from iteratively lagging 
certain non-symmetric terms. In particular, we write ∇h · (Eϕ) = E∇hϕ + (∇h · E)ϕ , and iteratively lag the second term on 
the right-hand side, replacing (∇h · E)ϕ with (∇h · E)ϕ̂ , where ϕ̂ is given from the previous iteration. The iteratively lagged 
version of Eq. (59) then gives rise to

B(u,ϕ) =
∫

b

Eb uϕ ds +
∫

0

κ �u� �ϕ� ds −
∫

0

�u�{{ 1

σt
E∇hϕ · n̂

}}
ds

−
∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds +

∫
∇hu · 1

σt
E∇hϕ dx +

∫
σa uϕ dx. (85)

We decompose B into its symmetric and skew-symmetric parts, B(u, ϕ) = S(u, ϕ) +N (u, ϕ), where

S(u,ϕ) = 1

2
(B(u,ϕ) + B(ϕ, u)) ,

N (u,ϕ) = 1

2
(B(u,ϕ) − B(ϕ, u)) .

Cf. Theorem 1.3 from [60], preconditioned GMRES will converge uniformly with respect to the discretization parameters if 
there exists a constant 0 ≤ δ < 1 such that

|N (u, P u)| ≤ δB(u, P u), (86)

where P = P B + P V is the preconditioned operator. We see that the skew-symmetric part of Eq. (85) is given by

N (u,ϕ) = 1

2

(
−
∫

0

�u�{{ 1

σt
E∇hϕ · n̂

}}
ds +

∫

0

�ϕ�{{ 1

σt
E∇hu · n̂

}}
ds

−
∫

0

{{∇hu

σt

}}
· �Eϕn̂

�
ds +

∫

0

{{∇hϕ

σt

}}
· �Eun̂

�
ds

)
. (87)
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Applying the identity �ac� {{b}} − �a� {{bc}} = 1
2 �c� (a1b2 + a2b1) to the above expression yields the following boundedness 

property

|N (u,ϕ)| � �E� |||u||| |||ϕ|||,
where �E� represents an upper bound on the jump of E over all element interfaces in the mesh. Using that Y p = Y B + V p

is a stable decomposition, we have

B(u, P u) = B(u, P B u) + B(u, P V u) = B(P B u, P B u) + B(P V u, P V u)

= S(P B u, P B u) + S(P V u, P V u) � |||u|||2.
Furthermore, since P B and P V are projections,

|||P u||| = |||P B u + P V u||| ≤ 2|||u|||.
Combining the above estimates, we obtain

|N (u, P u)| � �E� |||u||| |||P u||| � �E�B(u, P u).

Therefore, in order to obtain the bound (86) with 0 ≤ δ < 1, according to the size of the jumps �E�, we may choose κ
sufficiently large in the symmetric penalty term∫


0

κ �u��ϕ� ds.

Having chosen κ to satisfy this bound, preconditioned GMRES applied to this system will converge uniformly, independent 
of the discretization parameters.

Remark 3. While the GMRES convergence estimates shown in this section apply in the case of the modified (iteratively 
lagged) VEF discretization with sufficiently large penalty parameter, in practice we observe uniform convergence for the 
non-lagged VEF discretizations, without additional conditions on the size of the penalty parameter κ . This behavior is 
typical of domain decomposition algorithms applied to non-symmetric and indefinite problems, for which the theoretical 
convergence estimates tend to be pessimistic [49].

Remark 4 (AMG convergence). The practical subspace correction preconditioner is obtained by replacing A−1
V (the inverse of 

the continuous discretization, which is infeasible to compute for large problems) with a tractable approximation Ã−1
V , such 

as one V-cycle of algebraic multigrid, cf. Theorem 1. This procedure relies on Ã−1
V well approximating A−1

V (i.e. spectrally 
equivalent in the symmetric case). AMG performance may suffer on highly non-symmetric problems, and so in the following 
sections, we consider also choosing Ã−1

V to be one V-cycle of AMG built with a symmetrized version of the continuous 
operator AV .

7. Results

We now present numerical results concerning the iterative efficiency and computational performance of the outer fixed-
point iteration and inner preconditioned iterative solvers for each of the discretizations of the VEF equations discussed 
above. The outer iteration refers to the evaluation of the fixed-point operator G(ϕ) defined in Eq. (15) which includes 
inverting the streaming and collision terms in the transport equation and solving the discrete VEF equations. The inner 
iteration refers to solving the discrete VEF equations iteratively. Each inner iteration requires applying the matrix operator 
and preconditioner corresponding to the VEF discretization.

The VEF algorithms described in this paper were implemented using the MFEM [62,63] finite element framework. The 
stabilized bi-conjugate gradient (BiCGStab) and Jacobi solvers from MFEM were used to solve the VEF discretizations along 
with BoomerAMG, the AMG solver from the sparse linear algebra library hypre [56]. Note that BiCGStab performed equiva-
lently to GMRES and thus we elect to use BiCGStab because it does not require storage of a Krylov space. KINSOL, from the 
Sundials package [64], provided the Anderson-accelerated fixed-point solver. As described in Hindmarsh et al. [64, §2], the 
fixed-point and Anderson-accelerated fixed-point iteration is terminated when the max norm of the difference between suc-
cessive iterates is below the iterative tolerance. When iterative solver results are not presented, the parallel implementation 
of the sparse direct solver SuperLU [65] was used. We use the high-order DG SN transport solver from [1].

Unless otherwise specified, we set the penalty parameter to

κ =
{{

(p + 1)2 }}
(88)
σth
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Table 1
A summary of the key algorithmic properties of the VEF discretizations.

IP BR2 MDLDG CG

Solution Space Y p Y p Y p V p

Penalty scales with mesh size Yes Yes No –
Local Stencil Yes Yes No Yes
Requires specialized preconditioner Yes Yes No No

and the BR2 stabilization parameter to η = 4. These choices are standard in the literature for the model elliptic problem 
[66,67] and are the default choices implemented for discretizations of the Poisson equation in MFEM. We use the MDLDG 
method, the variant of the LDG method where κ ≡ 0 and set the upwinding vector w to be a unit vector at a 45◦ angle 
from the x-axis. The VEF discretizations all use the element-local basis defined using the Gauss-Lobatto points to enable the 
use of the subspace correction preconditioner where required. The transport discretization is always solved with the same 
finite element order as the VEF scalar flux. However, we use the positive Bernstein basis [68] for the transport discretization. 
A summary of the properties associated with each VEF discretization is presented in Table 1.

7.1. Method of manufactured solutions

The accuracy of the methods is ascertained with the Method of Manufactured Solutions (MMS). The solution is set to

ψ = 1

4π

(
sin (πx) sin (π y) + �x�y sin (2πx) sin (2π y) + �2

x sin

(
3π(x + δ)

1 + 2δ

)
sin

(
3π(y + δ)

1 + 2δ

)
+ γ

)
(89)

where the parameters δ = 0.1 and γ = 0.5 control the amount of spatially varying, quadratically anisotropic inflow and 
uniform, isotropic inflow, respectively. The computational domain is D = [0, 1]2. With this solution, the Eddington tensor 
varies in space and has non-zero off-diagonal components. Trigonometric functions are used so that the solution cannot be 
exactly represented by polynomials. The scalar flux is then

φ = sin (πx) sin (π y) + 1

3
sin

(
3π(x + δ)

1 + 2δ

)
sin

(
3π(y + δ)

1 + 2δ

)
+ γ . (90)

These MMS angular and scalar flux solution functions are substituted into the transport equation to solve for the MMS 
source function.

The accuracy of the VEF discretizations can be investigated in isolation by computing the VEF data from the MMS 
angular flux and setting the sources Q 0 and Q 1 to the moments of the transport MMS source. This is accomplished by 
computing the VEF data from the MMS angular flux projected onto a finite element space of equal order to the VEF finite 
element space. An open, Gauss-Legendre basis is used for the angular flux so that the Eddington tensor has discontinuities 
of magnitude O(hp+1) on interior mesh faces. The VEF data and source moments are computed using level symmetric S4
angular quadrature. The VEF equations are then solved as if E, Eb , Q 0, and Q 1 are provided data.

We use refinements of a third-order curved mesh created by distorting an orthogonal mesh according to the velocity 
field of the Taylor Green vortex. This mesh distortion is generated by advecting the mesh control points with

x =
T∫

0

v dt , (91)

where the final time T = 0.3π and

v =
[

sin(x1) cos(x2)

− cos(x1) sin(x2)

]
(92)

is the analytic solution of the Taylor Green vortex. The time integration is calculated with 300 forward Euler time steps. An 
example mesh is shown in Fig. 3a.

Fig. 3b shows the L2(D) error between the VEF solution and the exact MMS scalar flux solution as the mesh is refined 
for the IP, BR2, MDLDG, and CG VEF discretizations when quadratic basis functions are used. Here, hmax is the maximum 
value of the characteristic element length in the mesh. All methods have nearly identical error behavior and converge 
with third-order accuracy as expected. This experiment is repeated with p = 3 in Table 2. Logarithmic regression is used to 
compute the exponent and constant of the error function E = Chp̄

max with C the constant and p̄ the method’s experimentally 
observed order of accuracy. The standard deviation of the four error values for each mesh is also provided to quantify the 
variance in the error behavior. Accuracy of O(hp+1) is observed and the four variants are shown to have variance below the 
discretization error.
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Fig. 3. (a) An example third-order mesh distorted according to the Taylor Green hydrodynamics solution. (b) The MMS error as the mesh is refined for each 
VEF method when p = 2. Each method converges with third-order accuracy.

Table 2
MMS error for each method as a function of the maximum characteristic mesh size, hmax, with p = 3. The 
standard deviation of the four error values in each row is also provided showing that differences between each 
method are below the discretization error. The order of accuracy and error constant were computed with loga-
rithmic regression.

hmax IP BR2 MDLDG CG Deviation

8.345 × 10−2 2.678 × 10−4 2.676 × 10−4 2.598 × 10−4 2.688 × 10−4 3.622 × 10−6

5.564 × 10−2 5.163 × 10−5 5.158 × 10−5 4.837 × 10−5 5.169 × 10−5 1.415 × 10−6

4.173 × 10−2 1.631 × 10−5 1.630 × 10−5 1.505 × 10−5 1.632 × 10−5 5.463 × 10−7

3.338 × 10−2 6.684 × 10−6 6.680 × 10−6 6.115 × 10−6 6.686 × 10−6 2.459 × 10−7

Order 4.028 4.028 4.092 4.032
Constant 5.885 5.882 6.678 5.966

7.2. Thick diffusion limit

Next, we investigate the iterative convergence properties of the VEF methods in the regime known as the asymptotic 
thick diffusion limit [14]. The material data are set to:

σt = 1

ε
, σa = ε , σs = 1

ε
− ε , q = ε (93)

with ε ∈ (0, 1] and the thick diffusion limit corresponding to the limit ε → 0. A coarse mesh that does not adequately 
resolve the mean free path is used to stress the convergence of the VEF algorithm. This is a numerically challenging, but 
common in practice, regime where robust performance is crucial.

We first demonstrate robust convergence on an 8 × 8 linear mesh with D = [0, 1]2. Convergence was identical for linear, 
quadratic, and cubic basis functions so we present results for p = 2 only. Level symmetric S4 angular quadrature is used. 
Fixed-point iteration without Anderson acceleration is used to solve the coupled transport-VEF system.

Table 3 shows the number of fixed-point iterations required to converge to a tolerance of 10−6 as ε → 0. All four VEF 
variants converged robustly and in an identical number of iterations for each value of ε . Lineouts of the 2D solutions are 
shown in Fig. 4 to demonstrate that the non-trivial, diffusion solution is obtained by each method. Note that even the 
continuous finite element discretization paired with the discontinuous finite element transport discretization is robust in 
the thick diffusion limit.

This experiment is repeated on the triple point mesh shown in Fig. 5. This mesh was generated by running a purely 
Lagrangian hydrodynamics simulation on a third-order mesh. The mesh contains concave/reentrant interior faces meaning 
the matrix corresponding to the transport discretization cannot be reordered to be strictly lower block triangular. The 
pseudo-optimally reordered sweep from [1], which lags the incoming angular flux on reentrant faces, is used to enable an 
element-by-element transport solve. Since the incoming fluxes on reentrant faces are lagged, the angular flux on these faces 
is not linearly eliminated. In other words, the presence of reentrant faces means that the transport equation is not fully 
inverted at every fixed-point iteration. In addition, the mesh elements in the “swirl” at the center are severely distorted and 
thus have poor approximation ability. In practice, the mesh would be remapped before this level of distortion were present. 
Due to this severe distortion, stability of the IP VEF discretization required scaling the penalty parameter according to
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Table 3
Number of fixed-point iterations to conver-
gence in the thick diffusion limit on a coarse, 
orthogonal mesh.

ε IP BR2 MDLDG CG

10−1 8 8 8 8
10−2 6 6 6 6
10−3 4 4 4 4
10−4 3 3 3 3

Fig. 4. Lineouts of the 2D thick diffusion limit solutions taken at y = 1
2 for the (a) IP, (b) BR2, (c) MDLDG, and (d) CG methods. All methods converge to 

the non-trivial, diffusion solution as ε → 0.

Fig. 5. A depiction of the triple point mesh used to stress test the VEF algorithms on a severely distorted, third-order mesh. The mesh was generated with 
a purely Lagrangian hydrodynamics simulation.

κ = C

{{
(p + 1)2

σth

}}
, (94)

where C = maxKe∈T Ce with Ce the condition number of the Jacobian matrix for element Ke . For the triple point mesh, 
C = 169. Note that the BR2 method was stable on the triple point mesh without modifying the parameter η. This is an 
example where the increased assembly cost of the BR2 method provides additional robustness compared to the IP method. 
However, we have found that this heuristic for scaling the penalty parameter is effective for ensuring stability of the IP VEF 
method on many meshes with varying levels of distortion.

Table 4 shows the number of fixed-point iterations without Anderson acceleration required to converge to a tolerance 
of 10−6 for the four VEF variants as ε → 0. Fixed-point convergence is shown when one, two, and three lagged transport 
sweeps are applied per fixed-point iteration. Here, lagged transport sweep refers to inverting the streaming and collision 
operator using lagged information on reentrant faces. While one lagged sweep per fixed-point iteration required more 
iterations than the equivalent orthogonal-mesh problem, especially for large values of ε , the three lagged sweeps per fixed-
point iteration option had similar convergence properties to its orthogonal-mesh counterpart. This suggests the iterative 
slow-down can be attributed to the approximate sweep. While performing more lagged sweeps per fixed-point iteration did 
improve iterative efficiency, efficiency was not improved to the point that the total number of lagged sweeps was reduced. 
That is, the three-sweep option, which converged in the fewest iterations, performed the most lagged sweeps.

Lineouts of the solutions are provided in Fig. 6 to demonstrate that a non-trivial solution was obtained even on the 
distorted triple point mesh. The solutions have non-physical, non-monotonic oscillations due to imprinting of the severely 
distorted mesh. We present the solutions generated by the one sweep per fixed-point iteration option only as the two and 
three sweep options converged to equivalent solutions.
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Table 4
Number of fixed-point iterations required for convergence on the triple point mesh as ε → 0. On the 
triple point mesh, the presence of reentrant faces means the streaming and collision operator is not 
fully inverted at each iteration. Each method is tested with 1, 2, and 3 approximate transport inversions 
per fixed-point iteration.

ε IP BR2 MDLDG CG

1 2 3 1 2 3 1 2 3 1 2 3

10−1 19 11 10 19 11 10 23 14 12 19 11 10
10−2 11 8 7 11 8 7 19 9 8 11 8 7
10−3 8 5 4 8 5 4 9 5 5 8 5 4
10−4 6 4 3 6 4 3 6 4 3 6 4 3

Fig. 6. Lineouts of the 2D thick diffusion limit solutions on the triple point mesh taken at x = 3.5 for the (a) IP, (b) BR2, (c) MDLDG, and (d) CG methods. 
Non-monotonic oscillations are observed due to imprinting from the severely distorted mesh.

Table 5
The number of Anderson-accelerated fixed-point iterations, with 
Anderson space of size a, required for convergence on the triple 
point mesh. The interior penalty VEF method is used. The low 
memory variant builds the Anderson space from the VEF scalar 
flux only while the augmented version builds the Anderson space 
from the VEF scalar flux and the angular flux.

ε Low Memory Augmented

a = 0 a = 5 a = 0 a = 5

10−1 19 20 19 14
10−2 11 13 11 11
10−3 8 11 8 8
10−4 6 8 6 6

Table 5 shows the diffusion scaling on the triple point mesh for the IP VEF method with Anderson acceleration. An 
Anderson space of size a is used where a = 0 is equivalent to fixed-point iteration. We compare convergence when the 
Anderson space is built from the scalar flux only and when it is built from the scalar and angular fluxes. These variants 
are referred to as “low memory” and “augmented”, respectively. Note that to simplify the implementation, the augmented 
Anderson space is built from the entire angular flux and not just the subset of angular flux unknowns corresponding to 
reentrant faces. The augmented variant saw improvement for ε = 10−1 but otherwise converged equivalently to fixed-point 
iteration. The low memory option was not improved by Anderson acceleration and actually took 1-3 more iterations to 
converge. Since convergence is primarily hindered by the inexact transport inversion, it is expected that Anderson cannot 
improve convergence when the Anderson space is not augmented with the angular flux.

7.3. Linearized crooked pipe

We now demonstrate the efficacy of the methods on a more realistic, multi-material problem. A common benchmark is 
the crooked pipe problem. The geometry and materials are shown in Fig. 7. The problem consists of two materials, the wall 
and the pipe, which have an 1000x difference in total interaction cross section. We mock the time-dependent benchmark 
as a steady-state problem by adding artificial absorption and fixed-source terms corresponding to backward Euler time 
integration. A large time step such that c�t = 103 is used with an initial condition ψ0 = 10−4 for all (x, �) ∈D ×S2. Thus, 
the absorption and source terms are

σa = 1

c�t
= 10−3 1

cm
, (95a)

q = 1
ψ0 = 10−1 1

3
. (95b)
c�t cm s str
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Fig. 7. Geometry, material data, and boundary conditions for the linearized crooked pipe problem.

Table 6
The number of Anderson-accelerated fixed-point iterations until conver-
gence to a tolerance of 10−6 for the IP, BR2, MDLDG, and CG discretizations 
of VEF on the linearized crooked pipe problem refined in h and p. An An-
derson space of size two is used.

Ne IP BR2 MDLDG CG

p
=

1

112 10 10 13 10
448 11 11 14 11
1792 13 13 16 13
7168 14 14 16 14

p
=

2

112 13 13 15 13
448 14 14 16 14
1792 15 15 16 15
7168 15 15 17 15

p
=

3

112 14 14 16 14
448 15 16 16 16
1792 15 15 17 15
7168 15 15 17 16

The boundary conditions are

f =
{

1
2π , x = 0 and y ∈ [−1/2,1/2]
0 , otherwise

, (96)

so that radiation enters the pipe at the left side of the domain. We use a Level Symmetric S12 angular quadrature set. The 
zero and scale [69] negative flux fixup – a sweep-compatible method that zeros out negativity and rescales so that particle 
balance is preserved – is used inside the inversion of the streaming and collision operator to ensure positivity.

The efficiency of the outer fixed-point and inner linear iterations is investigated by refining in h and p on a uniform mesh 
of quadrilateral elements that is aligned with the materials. The outer solver is Anderson-accelerated fixed-point iteration 
with two Anderson vectors. Anderson acceleration is not required for convergence on this problem but does provide more 
uniform convergence in h. Since the mesh is orthogonal, the transport equation is fully inverted at each outer iteration. This 
allows use of the low memory variant so that the storage cost of Anderson acceleration is two scalar flux-sized vectors. 
The outer and inner tolerances 10−6 and 10−8, respectively. The uniform subspace correction (USC) preconditioner with 
one Jacobi iteration and one AMG V-cycle per application is used for the IP and BR2 discretizations. The CG and MDLDG 
discretizations use one V-cycle of AMG as a preconditioner. The previous outer iteration is used as an initial guess for 
BiCGStab so that the initial guess becomes progressively better as the outer iteration converges. For runtime data, each 
method, refinement, and polynomial order was computed five times with the presented time the minimum runtime across 
the repeated runs.

Table 6 shows the number of outer Anderson-accelerated fixed-point iterations until convergence for each of the four VEF 
methods. The convergence in outer iterations is identical for the IP, BR2, and CG methods aside from a few deviations by one 
iteration for the case of p = 3. The MDLDG method took between 1-3 iterations more to converge than the IP, BR2, and CG 
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Table 7
The maximum, minimum, and average number of inner BiCGStab iterations until convergence to an inner tolerance of 10−8 across 
all the outer iterations for each of the VEF methods. The previous outer iterate is used as the initial guess for the inner solver so 
that the number of inner iterations decreases as the outer iteration converges.

Ne IP BR2 MDLDG CG

Max Min Avg. Max Min Avg. Max Min Avg. Max Min Avg.

p
=

1

112 15 6 12.40 14 6 12.30 10 4 7.46 7 3 5.70
448 17 6 12.82 16 6 12.36 11 4 8.21 7 3 5.82
1792 17 6 12.54 17 6 12.23 11 4 8.06 8 2 5.77
7168 18 6 12.79 17 6 12.21 12 4 8.12 8 2 5.50

p
=

2

112 16 5 11.77 16 5 11.77 16 4 8.93 9 3 7.08
448 17 7 12.57 16 5 12.57 12 5 9.19 10 3 7.00
1792 17 5 12.87 16 5 12.73 14 6 10.50 10 3 7.13
7168 17 6 12.87 18 6 13.00 14 6 10.71 10 3 7.20

p
=

3

112 21 6 14.71 18 7 14.00 30 7 14.44 11 4 8.57
448 22 7 15.40 21 6 14.44 17 7 13.38 14 4 9.19
1792 22 9 16.33 22 9 15.93 18 8 14.35 15 5 10.00
7168 22 9 16.73 20 9 16.73 20 8 14.76 14 4 10.50

Table 8
The average time spent per outer iteration assembling and solving the discrete VEF system on hp refinements of 
the crooked pipe problem. Times are presented in milliseconds.

Ne VEF Assembly Time (ms) VEF Solve Time (ms)

IP BR2 MDLDG CG IP BR2 MDLDG CG

p
=

1

112 13.05 14.68 13.76 13.07 2.15 2.15 2.71 1.62
448 49.88 56.78 52.67 49.79 7.90 7.87 11.15 6.00
1792 193.29 220.92 205.48 194.45 30.55 30.36 43.61 23.11
7168 766.81 874.59 818.62 784.98 124.33 121.41 174.15 93.34

p
=

2

112 24.88 30.84 31.04 24.77 4.40 4.44 5.96 2.81
448 95.89 120.08 120.35 96.90 17.38 17.56 23.58 10.77
1792 377.29 478.98 490.49 389.00 70.61 71.08 101.59 42.97
7168 1504.68 1915.12 1986.40 1566.33 280.57 286.26 409.00 170.49

p
=

3

112 47.08 67.40 70.94 46.73 11.66 11.49 18.25 6.49
448 184.06 265.64 288.93 186.42 47.00 44.61 73.13 26.52
1792 737.56 1083.37 1171.01 750.89 199.79 195.44 298.32 110.74
7168 3064.93 4510.38 4872.59 3098.09 891.92 897.10 1301.06 463.27

methods. The IP and BR2 methods both have stabilization terms that regularize toward the CG solution whereas the MDLDG 
method does not. MDLDG’s slower convergence indicates that the numerical diffusion induced by using stabilization terms 
or a continuous solution representation may mildly increase convergence of the outer iteration. Furthermore, the identical 
convergence rates exhibited by the IP/BR2 and CG methods suggest that the stabilization terms cause the overall algorithm 
to behave as if a continuous solution representation were used.

The maximum, minimum, and average number of preconditioned BiCGStab iterations to solve the VEF system at each 
outer iteration are shown in Table 7. The use of the previous outer iteration’s solution as the initial guess for the inner 
iteration allows BiCGStab to take fewer and fewer iterations as the outer iteration converges. This can be seen by the 
discrepancy between the maximum and minimum iterations required to converge. The CG method required the fewest 
iterations of all the methods, followed by MDLDG, and then IP and BR2. These results show that BiCGStab preconditioned 
with the USC preconditioner for the IP and BR2 methods and AMG for the MDLDG and CG methods is a scalable solver for 
the inner iteration in both h and p.

The average assembly and solve times are provided in Table 8. Here, the costs have been normalized by the number of 
outer iterations to facilitate their direct comparison. Note that in our implementation, the linear system for the CG method is 
formed by building the linear system for the IP VEF method (over the space Y p ) and then assembling it onto the continuous 
finite element space V p . That is, the CG assembly cost includes the cost of assembling the IP VEF linear system and an 
additional step where entries corresponding to shared degrees of freedom in the space V p are accumulated. A more optimal 
implementation would not assemble the bilinear forms over 
0 that ultimately cancel when assembled on a continuous 
finite element space. MDLDG and BR2 were the most expensive to assemble followed by IP and CG. Both the BR2 and 
MDLDG methods have lifting operators which require factorizing the block-diagonal-by-element W p total interaction mass 
matrix, an expense that the IP and CG methods avoid.

The CG method has the fewest linear unknowns to solve for and only applies AMG to the smaller continuous finite 
element operator. Through the USC preconditioner, IP and BR2 also only apply AMG to the continuous operator but the USC 
preconditioner includes an additional Jacobi iteration on the interfacial unknowns. Further, USC preconditioned BiCGStab ap-
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Table 9
The total runtime along with the total time spent in the transport sweep and in forming and solving the VEF equations on the crooked pipe problem under 
hp refinement. All times are presented in seconds.

Ne Total Time (s) Sweep Time (s) VEF Time (s)

IP BR2 MDLDG CG IP BR2 MDLDG CG IP BR2 MDLDG CG

p
=

1

112 2.08 2.09 2.60 2.06 1.82 1.82 2.28 1.81 0.15 0.17 0.22 0.15
448 7.75 7.85 9.62 7.72 6.72 6.74 8.35 6.72 0.65 0.72 0.90 0.62
1792 34.19 34.55 41.43 34.12 29.73 29.74 35.94 29.75 2.98 3.33 4.05 2.88
7168 144.94 145.97 164.66 145.43 126.14 125.73 142.68 126.93 12.88 14.34 16.27 12.64

p
=

2

112 4.30 4.37 4.97 4.27 3.76 3.75 4.26 3.75 0.39 0.47 0.56 0.36
448 16.77 17.05 19.39 16.70 14.57 14.52 16.49 14.60 1.63 1.97 2.33 1.53
1792 70.16 71.67 77.15 69.93 60.69 60.88 65.20 61.03 6.95 8.48 9.66 6.65
7168 278.40 285.69 323.74 279.80 241.33 242.30 272.90 243.85 27.91 34.18 41.67 26.91

p
=

3

112 9.21 9.50 10.86 9.13 8.08 8.09 9.13 8.08 0.84 1.13 1.44 0.76
448 37.88 41.58 42.36 40.47 33.16 35.36 35.28 35.85 3.57 5.08 5.86 3.47
1792 150.60 155.33 178.69 150.10 131.28 130.94 148.44 132.15 14.63 19.74 25.38 13.30
7168 626.69 653.19 736.71 659.28 544.86 550.04 609.53 580.13 61.90 83.70 106.64 58.64

Table 10
The average percent of elements requiring the application of the negative 
flux fixup during the transport sweep on the linearized crooked pipe prob-
lem.

Ne IP BR2 MDLDG CG

p
=

1

112 13.936 14.332 10.315 15.194
448 5.065 5.405 4.112 6.731
1792 2.255 2.249 2.017 2.503
7168 1.221 1.216 1.221 1.229

p
=

2

112 14.749 16.522 12.592 16.791
448 6.501 6.857 5.492 7.344
1792 3.111 3.109 2.832 3.192
7168 1.934 1.930 1.870 1.934

p
=

3

112 19.633 20.133 15.137 20.499
448 8.149 8.431 6.874 8.652
1792 4.555 4.556 4.283 4.565
7168 2.674 2.677 2.583 2.696

plied to the IP and BR2 VEF systems required ≈50% more iterations to converge compared to applying AMG preconditioned 
BiCGStab to the CG VEF system. While MDLDG typically took fewer iterations to converge than IP or BR2, AMG is applied 
to a larger system of equations corresponding to the space Y p instead of V p , increasing the expense of each AMG V-cycle. 
The sparse matrix operations associated with solving the MDLDG system are also more expensive than the IP, BR2, and CG 
methods due to MDLDG’s non-compact stencil which decreases the sparsity of the system. Thus, Table 8 shows MDLDG as 
the most expensive to solve, followed by IP and BR2, with the CG linear system the fastest to solve.

Next, we compare the total runtime to find the fixed-point ϕ = G(ϕ) on the crooked pipe problem along with the 
relative costs of the two major components of evaluating the fixed-point operator G(ϕ): the transport inversion, referred 
to as the transport sweep, and forming and solving the discrete VEF equations. This timing data is shown in Table 9. The 
sweep and VEF costs are averaged over the number of outer iterations. The ratio of the sweep to VEF costs averaged over 
four refinements in h and three refinements in p was 9.5, 7.9, 7.4, and 10.2 for the IP, BR2, MDLDG, and CG methods, 
respectively. The relative standard deviation in total runtime across the four methods ranged from 4% to 10%. In other 
words, the sweep dominates the cost of the algorithm and thus total runtime was largely insensitive to the choice of VEF 
discretization.

The variance in the average sweep time is due to the methods varying use of the negative flux fixup. Table 10 provides 
the average percentage of the elements in the transport sweep where the flux fixup was applied. Generally, refining the 
mesh reduced the reliance on the fixup since the solutions converge to the true solution that is positive as h → 0 while 
increasing the polynomial order caused an increase in fixup usage due to the increased oscillations caused by high-order 
interpolation. From least to most reliance on the flux fixup, the methods were ordered: MDLDG, IP, BR2, CG. The IP, BR2, 
and CG methods had similar usage of the fixup whereas MDLDG required significantly less. For example, on the coarsest 
meshes MDLDG differed from IP, BR2, and CG by between three and five percentage points. This discrepancy indicates that 
the more numerically diffusive VEF discretizations create scattering sources that are more likely to induce negativities in the 
transport sweep. This effect may be caused by an increase in numerical oscillations near material discontinuities produced 
by the methods that use a continuous solution representation or have a stabilization term that regularizes towards the 
continuous solution compared to the minimally dissipative MDLDG VEF solution.
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Finally, we note that the IP and CG methods were the fastest in overall runtime. Aside from the case of p = 3 with 
one and three refinements, where the CG algorithm required one more outer iteration than the IP method, IP and CG had 
nearly equivalent run times. While the CG VEF solve was faster than the IP VEF solve, this speedup was balanced by longer 
sweep times due to CG VEF’s increased reliance on the negative flux fixup. The next fastest was BR2 which was slowed 
down by longer assembly times compared to IP VEF. Finally, MDLDG was the slowest in overall runtime due to both its 
more expensive assembly and solve times and its larger number of outer iterations required for convergence compared to 
the other methods.

7.4. Spatial convergence to a reference transport method

In this section, we compare the solutions generated by the IP VEF method and a reference transport method taken to 
be the high-order DG SN method and DSA preconditioner of Haut et al. [40] as the mesh is refined. Convergence between 
the VEF and SN solutions is shown on the thick diffusion limit problem from §7.2 and the crooked pipe problem from §7.3. 
Given a fixed angular quadrature rule, let the asymptotic spatial error for the VEF and SN methods in isolation be written:

‖ϕVEF − ϕex‖ = CVEFhp+1 , (97a)

‖ϕSN − ϕex‖ = CSNhp+1 , (97b)

where ϕex is the true solution of the problem, ϕVEF and ϕSN the VEF and SN numerical solutions, respectively, the Ci the 
error constants, h the mesh size, and p the finite element polynomial degree. We use the same mesh and polynomial degree 
for both the VEF and SN methods so that the value of hp+1 is the same in both methods. Comparison of the VEF and SN

solutions is facilitated by the following bound that makes use of the triangle inequality:

‖ϕVEF − ϕSN‖ = ‖(ϕVEF − ϕex) + (ϕex − ϕSN)‖
≤ ‖ϕVEF − ϕex‖ + ‖ϕSN − ϕex‖
= (CVEF + CSN)hp+1 .

(98)

Thus, we expect that the solutions produced by VEF and SN will converge with order p + 1 on smooth problems. Note, 
however, that this bound relies on the assumption that the numerical solutions are resolved enough to exhibit the asymp-
totic error behavior characterized by Eqs. 97 (i.e. σth � 1). In particular, this means that convergence between the solutions 
produced by the VEF and SN methods can only be expected when boundary layers are resolved. Non-uniform meshes are 
used to reduce the expense of capturing the steep gradients present in the boundary layers of the thick diffusion limit and 
crooked pipe problems.

7.4.1. Thick diffusion limit
The single-material thick diffusion limit problem is used to demonstrate convergence between the VEF and SN solutions 

on a problem with a smooth solution. In particular, this problem has no angular discontinuities and, for ε small enough, 
has a solution that is linearly anisotropic in angle. This means that the error due to SN angular quadrature is much smaller 
than the spatial error, allowing spatial convergence to be seen. We present results for p = 2. From Eq. (97), we expect to 
see third-order convergence. The material parameters are defined in Eq. (93) with the domain D = [0, 1]2 and ε = 10−2. To 
capture the boundary layer, meshes built from the Chebyshev points defined on the interval [0, 1] are used. The Chebyshev 
points cluster at the endpoints leading to a mesh that grades elements toward the boundary. An example of a mesh built 
from 21 Chebyshev points is shown in Fig. 8a.

Fig. 8b shows the convergence of the VEF and SN solutions in the L2(D) norm as a function of the maximum characteris-
tic element length in the mesh. The solutions are compared on four meshes generated from 61, 81, 101, and 121 Chebyshev 
points. The ratio of the maximum to minimum mesh size increases as more Chebyshev points are used: for the mesh built 
from 61 Chebyshev points hmax/hmin ≈ 51 while for 121 Chebyshev points hmax/hmin ≈ 89. The experimentally observed 
order of convergence on these four meshes was determined to be 2.825 using logarithmic regression. Note that hmax was 
used in the logarithmic regression calculation. This result demonstrates that VEF methods do in fact produce the transport 
solution and can converge with high-order accuracy on a problem that is smooth in space and angle.

7.4.2. Crooked pipe
We now show that VEF converges to the reference transport method on a multi-material problem. The geometry and 

material data are defined in §7.3. We use three refinements of a non-uniform mesh that grades the elements along the opti-
cally thick, wall side of the interface between the two materials. The base mesh contains 5216 elements and has minimum 
and maximum characteristic mesh lengths of 8 × 10−3 and 1 × 10−1, respectively. We use p = 2 and S12 angular quadrature 
in this comparison. This leads to ≈4 million and ≈250 million angular flux unknowns on the base mesh and the mesh 
with three uniform refinements, respectively.

Fig. 9 shows the scalar flux solutions to the crooked pipe problem on the base mesh with S12 angular quadrature 
computed using the IP VEF method, the SN method of Haut et al. [40], and an IP radiation diffusion model derived by 
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Fig. 8. (a) An example of a mesh built from a tensor product of Chebyshev points in the interval [0, 1] used to resolve the steep gradients in the solution 
at the boundary of the domain on the thick diffusion limit problem. (b) A plot of the L2(D) norm difference between the solutions generated by the IP 
VEF method and a DG SN transport method preconditioned with DSA on the thick diffusion limit problem with ε = 10−2. Both the VEF and SN methods 
used p = 2. The solutions are compared on four meshes generated from a tensor product of 61, 81, 101, and 121 Chebyshev points in each direction. The 
norms are presented as a function of the maximum characteristic mesh length, hmax. Convergence is compared to a reference third-order line to show that 
the VEF and SN solutions converge at the expected order.

setting the VEF data to their asymptotic, diffusive values of E = 1
3 I and Eb = 1/2. All methods were solved on the same 

mesh and use p = 2. Compared to the transport models, the diffusion model under and over heats the front and back of 
the inner wall, respectively, and over predicts the outflow at the end of the pipe. This behavior is evident in the lineouts of 
the solutions provided in Fig. 10 which show the solutions along the vertical lines at the left and right edges of the domain 
and along the center line defined by y = 0.

Using DG SN as a reference solution, we see that the VEF solution does capture transport effects such as the “shadow” 
behind the inner wall induced by the radiation turning the corner as well as the oscillations in the solution seen in Fig. 10b 
likely induced by ray effects. On the base mesh using S12 angular quadrature, the SN and VEF solutions differ in the L2(D)

norm by 6.29%. We stress that the discrepancy between SN and VEF is due to the numerical errors present in both the VEF 
solution and the SN solution we consider as the reference transport solution. By contrast, the diffusion model differs from 
SN by 101% in the L2(D) norm.

The L2(D) difference between the VEF and SN solutions computed on the base mesh and with three uniform refinements 
is plotted in Fig. 11 as a function of the maximum mesh length. Third-order convergence is predicted since we use p = 2. 
However, we have observed only first order convergence after the problem is spatially resolved enough. This sub-optimal 
convergence may be due to the VEF method’s use of a negative flux fixup in the sweep where the SN method does not use 
a fixup or under resolution in space and/or angle. We stress that this is a difficult problem where the solution has angular 
dependence with discontinuous derivatives. In such case, angular quadrature is expected to converge slowly as the number 
of angles is increased. Furthermore, the solutions shown in Figs. 9a and 9b have visually obvious ray effects indicating under 
resolution in angle. Thus, it is unclear whether high-order convergence in space between these two numerically disparate 
schemes is possible on this problem.

7.5. Weak scaling

Here, we present a weak scaling study of the IP VEF method with p = 2 for both the inner iteration in isolation and the 
full fixed-point solve. Uniform refinements are used in combination with increasing the parallel partitioning by a factor of 
four so that the degrees of freedom per processor remains constant. The following results were generated on 29 nodes of 
the rztopaz machine at LLNL which has two 18-core Intel Xeon E5-2695 CPUs and 128 GB of memory per node. Timing 
data is presented as the minimum time measured across three repeated runs.

7.5.1. Inner solver on problem with mock VEF data
First, we investigate weak scaling on a mock problem where the VEF data are provided as inputs to the problem (as 

opposed to being solved for through fixed-point iteration). This allows the VEF system to be solved in isolation from the 
transport equation. We use the materials, geometry, and boundary conditions from the crooked pipe problem shown in 
Fig. 7 but set the Eddington tensor and boundary factor to
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Fig. 9. Solutions to the crooked pipe problem using (a) the IP VEF method, (b) the SN method from [40], and (c) an IP radiation diffusion model. The mesh 
is refined at the interface between the thick and thin regions. All three methods used p = 2. The transport models both used S12 level symmetric angular 
quadrature. The VEF and SN methods both show the shadow induced by the inner wall forcing the radiation to flow around the pipe that the diffusion 
model misses.
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Fig. 10. Lineouts of the VEF, SN , and diffusion crooked pipe solutions from Fig. 9. The solutions are compared along (a) the vertical line x = 0, (b) the 
horizontal line y = 0, and (c) the vertical line x = 7. The horizontal lineout shows the diffusion model incorrectly under and over heating the front and 
back side of the inner wall, respectively, when compared to the VEF and SN transport models. The SN and VEF solutions are visually close with small 
discrepancies due to the numerical errors present in both the SN and VEF solutions.

Fig. 11. The difference between the IP VEF and DG SN solutions in the L2(D) norm on the crooked pipe problem as a function of the maximum characteristic 
mesh length, hmax. Both methods used p = 2 and S12 angular quadrature. The solutions are solved on three uniform refinements of a base mesh that grades 
elements along the optically thick side of the interface between the wall and pipe. First-order convergence in space is observed once the problem is spatially 
resolved enough.

E =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
9/11 0

0 1/11

]
, x ∈ pipe[

1/3 0

0 1/3

]
, x ∈ wall

, (99a)

Eb =
{

9/10 , x ∈ ∂(pipe)

1/2 , x ∈ ∂(wall)
. (99b)

This corresponds to a linearly anisotropic (i.e. diffusive) angular flux in the wall and an extremely forward peaked solution

ψ = �8
x (100)

in the pipe. The motivation for this choice is that the solvers are predicted to struggle when the Eddington tensor is 
discontinuous. We stress that this setup does not correspond to a physically realistic problem. In particular, the angular flux 
has an O(1) jump along the interface between the thick wall and thin pipe.

Table 11 shows the number of BiCGStab iterations to convergence for the USC-preconditioned IP VEF system on this mock 
problem. The columns of the table parameterize the solver used for the continuous stage of the USC preconditioner. The 
standard USC preconditioner used in the previous results did not converge. However, when a sparse direct solver is applied 
to the CG operator instead of AMG, uniform convergence is recovered. This suggests that the preconditioner is failing due 
to AMG’s inability to adequately approximate the inverse of the continuous operator when jumps in the Eddington tensor 
are present (see Remark 4).
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Table 11
Weak scaling the linear solve for the IP VEF method with p = 2 on a non-physically difficult problem with mock VEF data. The columns parameterize the 
method used to approximately invert the continuous operator in the USC preconditioner. The standard USC preconditioner with AMG on the continuous 
operator did not converge due to the large discontinuity in the VEF data. Convergence is recovered when a sparse direct solver is used to invert the 
continuous operator indicating that AMG is struggling to accurately invert the continuous operator. Efficient iterative solvers are found by applying AMG to 
a symmetrized continuous operator. The USC-S method applies one AMG V-cycle to this symmetrized operator while USC-S3 uses three AMG V-cycles in 
an attempt to better approximate the inverse of the original non-symmetric continuous operator. Solve times are also provided.

Processors DOF Iterations Solve Time (s)

USC USC-Direct USC-S USC-S3 USC USC-Direct USC-S USC-S3

1 12 348 87 21 28 25 0.24 0.25 0.08 0.15
4 49 392 205 26 30 23 0.72 1.08 0.11 0.19
16 197 568 – 24 30 26 – 4.38 0.16 0.31
64 790 272 – 25 34 24 – 16.30 0.30 0.39
256 3 161 088 – 27 33 26 – 63.20 0.32 0.48
1024 12 644 352 – 28 33 25 – 272.24 0.37 0.52

– indicates solve did not converge within 250 iterations

Note that AMG is effective on the standard continuous finite element discretization of diffusion. It is then possible that 
AMG applied to a symmetrized VEF operator could be an effective preconditioner for the non-symmetric VEF bilinear form. 
A symmetric operator more amenable to accurate inversion via AMG is found by lagging the terms

−
∫

0

{{∇u

σt

}}
· �Eϕn̂

�
ds +

∫
∇u · 1

σt
(∇h · E)ϕ dx (101)

in the CG VEF discretization (Eq. (77)). The symmetrized operator is then:∫

b

Eb uϕ ds +
∫

∇hu · 1

σt
E∇hϕ dx +

∫
σa uϕ dx , (102)

with u, v ∈ V p . This is a CG discretization of

−∇ · 1

σt
E∇ϕ + σaϕ (103)

which corresponds to the VEF drift-diffusion equation where the advective term (∇ · E)ϕ is lagged and moved to the right 
hand side.

The remaining columns of Table 11 present the use of AMG applied to the symmetrized VEF operator in Eq. (102) to 
precondition the original non-symmetric IP VEF system on the mock problem. The “USC-S” column shows convergence 
for a preconditioner where one AMG V-cycle is applied to the symmetrized CG operator in place of AMG applied to the 
non-symmetric operator. In other words, an approximate inverse of the symmetric operator given in Eq. (102) is used to 
precondition and solve the non-symmetric VEF system. The method converges and is roughly uniform in iteration counts as 
the mesh is refined.

The “USC-S3” column corresponds to the use of a preconditioner that uses three iterations of an inner Richardson iter-
ation to approximate the inverse of the non-symmetric CG operator. The Richardson iteration is preconditioned using one 
V-cycle of AMG applied to the symmetrized CG operator. In this way, an approximation to the inverse of the original non-
symmetric operator is computed while supporting the use of AMG on the symmetrized operator. Note that we use a fixed 
number of iterations and thus do not attempt to converge the inner iteration. The intent of the inner iteration is only to 
provide a preconditioner that more closely approximates the inverse of the non-symmetric operator compared to the USC-S 
option. For this preconditioner, iterative efficiency generally fell between that of the sparse direct solver and using only 
AMG on the symmetrized CG operator. This is expected because more computational work is performed at each iteration 
compared to the USC-S preconditioner. Inner iterations do reduce the number of total iterations to convergence but, since 
three V-cycles are performed per preconditioner application, not to the degree that fewer V-cycles are performed. This is 
corroborated by the solve times also presented in Table 11: on the largest problem size, the USC-S3 method was 40% more 
expensive despite requiring 8 fewer iterations than USC-S.

Fig. 12 plots the weak scaling efficiency defined as

εn = solve time with one processor

solve time with n processors
(104)

for the three convergent preconditioning schemes. The ideal weak scaling is εn = 1. As expected, the sparse direct solver 
does not weak scale. Weak scaling efficiency for the iterative techniques is not expected to be ideal due to the unavoidable 
communication costs inherent to distributed sparse matrix operations. In particular, weak scaling efficiency is expected to 
degrade when intra-node communication is required. For the rztopaz architecture, each node has 36 processors meaning 
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Fig. 12. Weak scaling efficiency for solving the IP VEF linear system on the mock problem with p = 2. Three methods for approximating the inverse of 
the CG operator used in the USC preconditioner are compared. On the mock problem, applying AMG to the CG operator was not convergent. Scaling was 
recovered by applying AMG to a symmetrized CG operator. The USC-S3 option applies AMG three times per iteration leading to more expensive solve times 
but overall better scaling compared to USC-S which applies AMG to the symmetrized CG operator only once per iteration. The scaling of the direct method 
is provided to show the efficiency of a method that is uniform in iteration count but unscalable due to the poor scaling inherent to sparse direct methods.

Table 12
Weak scaling data for the linear solve for the IP VEF method with p = 2 on the first iteration of the linearized crooked pipe problem. A parallel block 
Jacobi sweep is used to generate the VEF data needed to form the VEF system. On this physically realistic problem, both the standard USC and the two USC 
preconditioners that utilize a symmetrized CG operator converged uniformly. Iterative efficiency and solve times are compared to solving the symmetric 
positive definite linear system associated with an IP discretization of radiation diffusion using the USC preconditioner.

Processors DOF Iterations Solve Time (s)

USC USC-S USC-S3 Diffusion USC USC-S USC-S3 Diffusion

1 42 588 17 19 13 14 0.16 0.18 0.27 0.14
4 170 352 19 20 14 16 0.21 0.22 0.34 0.19
16 681 408 20 22 15 17 0.36 0.39 0.52 0.31
64 2 725 632 21 22 14 17 0.61 0.62 0.78 0.50
256 10 902 528 25 21 16 18 0.73 0.63 0.89 0.53
1024 43 610 112 28 24 15 17 1.01 0.88 1.15 0.63

intra-node communication is required for the problems where 64, 256, and 1024 processors are used. The weak scaling 
efficiency of the USC-S and USC-S3 methods appears to saturate at 20% and 30%, respectively. The increased efficiency of 
USC-S3 is due to its more consistent required number of iterations to convergence. Thus, while USC-S3 is more expensive 
than USC-S it may scale more predictably and robustly.

7.5.2. Inner solver on first iteration of crooked pipe with parallel block Jacobi transport sweep
Next, we show weak scaling of the IP VEF linear solve on the first outer iteration of the linearized crooked pipe problem 

from §7.3 with p = 2. One parallel block Jacobi transport sweep is performed to provide angular fluxes to compute the 
VEF data. In other words, each processor performs a local sweep on its processor-local domain using incoming angular flux 
information that is lagged and taken from the previous iteration. Thus, each angle can be computed independently on each 
processor. However, the transport sweep is no longer exact and the convergence of the outer fixed-point problem will now 
depend on the parallel decomposition. Our use of parallel block Jacobi is motivated by a desire to avoid the communication 
costs and idle times associated with a full parallel upwind sweep and that problems of interest typically have large regions 
of optically thick materials that allow parallel block Jacobi to converge quickly.

Table 12 shows the number of BiCGStab iterations to solve the IP VEF system to a tolerance of 10−8. BiCGStab is precon-
ditioned with the USC, USC-S, and USC-S3 preconditioners. In addition, the number of iterations to solve the corresponding 
IP diffusion problem (by setting E = 1

3 I and Eb = 1/2) with the standard USC preconditioner are shown. These results indi-
cate that on a physically realistic problem the USC, USC-S, and USC-S3 options are all effective. Compared to IP diffusion, 
the standard USC preconditioner took 65% more iterations to solve the non-symmetric VEF equations on the largest problem 
size. However, when USC-S was used, this discrepancy was reduced to 41%. The USC-S method led to the fastest solve times, 
followed by USC, and then USC-S3. In particular, solving the IP VEF linear system using the USC-S preconditioner was only 
12% more expensive than solving the symmetric IP radiation diffusion system on the finest mesh with 1024 processors. 
Weak scaling efficiency is plotted in Fig. 13. Efficiency of the USC-S and USC-S3 methods is comparable to that of solving 
the IP radiation diffusion system.

7.5.3. Full algorithm on crooked pipe with parallel block Jacobi transport sweep
The single iteration test above is now repeated on the full algorithm. Performance is presented for the IP VEF method 

with p = 2 coupled to a parallel block Jacobi sweep. Due to the lagging of incoming angular fluxes on processor boundaries, 
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Fig. 13. Weak scaling efficiency on the first iteration of the crooked pipe problem. Three preconditioners for the IP VEF system are compared. Scaling on 
the non-symmetric VEF system is compared to solving an IP radiation diffusion system preconditioned with the standard USC preconditioner. Here, it can 
be seen that all three preconditioners for the VEF system scale similarly to solving the symmetric radiation diffusion system.

Table 13
A weak scaling study of the full IP VEF fixed-point solve with p = 2 on the crooked pipe problem. A parallel block Jacobi transport sweep was used to 
approximate the inverse of the streaming and collision operator with minimal communication cost. Outer refers to the number of fixed-point iterations 
required to converge to a tolerance of 10−6. The maximum, minimum, and average number of inner preconditioned BiCGStab iterations are shown for 
two types of preconditioners: the standard USC preconditioner which applies AMG to the continuous operator and the USC-S preconditioner which applies 
AMG to a symmetrized continuous operator. The inner tolerance was 10−8. The maximum and minimum percentage of elements requiring the negative 
flux fixup within the parallel block Jacobi transport sweep are presented along with the maximum and minimum values of ‖ �En̂�‖L2(
0) . Due to the 
parallel block Jacobi sweep and small problem size per processor, the outer iteration does not converge independent of the processor count. In addition, 
the maximum number of USC-preconditioned BiCGStab iterations increases with the processor count due to the increasing maximum discontinuity in the 
Eddington tensor caused by inaccurate angular fluxes computed by the parallel block Jacobi sweep in the early stages of the outer iteration. This scaling is 
less pronounced when the USC-S preconditioner is used. Note that both preconditioners have an average number of iterations that is uniform with respect 
to the processor count and problem size.

Processors DOF Outer Inner It. (USC) Inner It. (USC-S) % Fixed Up Eddington Jump

Max Min Avg. Max Min Avg. Max Min Max Min

1 4032 30 18 2 9.267 17 2 9.167 7.39 1.61 6.5 × 10−2 4.9 × 10−2

4 16 128 51 22 2 10.451 21 2 10.549 11.08 1.14 1.7 × 10−1 4.3 × 10−2

16 64 512 76 30 2 10.724 25 2 10.618 13.97 0.74 2.0 × 10−1 2.5 × 10−2

64 258 048 135 35 1 10.881 27 1 10.963 12.93 0.39 1.4 × 10−1 1.4 × 10−2

256 1 032 192 261 50 1 10.590 27 1 10.508 14.84 0.22 1.8 × 10−1 6.8 × 10−3

1024 4 128 768 540 95 1 10.528 36 1 10.155 16.22 0.13 2.5 × 10−1 2.4 × 10−3

it is not expected that the number of outer iterations will be independent of the parallel decomposition. The fixed-point 
tolerance is 10−6 with the inner BiCGStab tolerance 10−8. Fixed-point iteration without Anderson acceleration is used. 
Performance is compared when the inner BiCGStab iteration is preconditioned by the USC and USC-S methods. Note that 
the number of degrees of freedom per processor is significantly lower in this section than the scaling study for the first 
iteration of the crooked pipe in order to enable solving the full problem at scale.

Table 13 presents the outer and inner iteration data as the mesh is refined and the processor count increased. Due 
to the parallel block Jacobi sweep, the outer iteration is not robust to the processor count. The maximum required inner 
BiCGStab iterations increases with higher processor counts for both preconditioning schemes. However, the average number 
of inner iterations per outer iteration remains constant. Table 13 also includes information on the percentage of elements 
that required the negative flux fixup and a measure of the discontinuity of the Eddington tensor. This measure is computed 
with the L2(
0) norm of the jump of the Eddington tensor applied to the normal. In other words, we tabulate the maximum 
and minimum values of

‖�
En̂

�‖L2(
0) =
√√√√∫


0

�
En̂

� · �En̂
�

ds , (105)

across each of the outer iterations. Note that the maximum percentage of elements requiring the fixup and the maximum 
measure of the discontinuity of the Eddington tensor both increase as the processor count is increased and the mesh 
is refined. Conversely, the minimum values both decrease with processors and mesh refinements. This behavior is likely 
due to the use of the parallel block Jacobi sweep. At the beginning of the iteration, parallel block Jacobi provides a poor 
approximation to the inverse of the streaming and collision operator, especially at parallel boundaries, inducing jumps 
beyond the spatial discretization error in the angular flux and thus the Eddington tensor. As the outer iteration converges, 
parallel block Jacobi provides a better approximation to the inverse of the streaming and collision operator leading to jumps 
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Table 14
Timing data for the VEF components of the full algorithm weak scaling study. The USC and USC-S preconditioners for the inner BiCGStab iteration are 
compared. All times are presented in milliseconds as the average cost per outer iteration. The USC-S preconditioner is cheaper to solve (for high processor 
counts) but is more expensive overall compared to the USC preconditioner due to its additional cost of assembling the symmetrized continuous operator.

Processors DOF Total VEF VEF Assembly Prec. Setup Solve

USC USC-S USC USC-S USC USC-S USC USC-S

1 4032 105.20 123.16 88.35 89.50 1.10 17.70 14.01 14.21
4 16 128 122.46 140.02 96.73 97.98 1.94 18.15 21.88 21.97
16 64 512 156.68 177.42 116.66 117.57 3.08 23.09 34.36 34.26
64 258 048 204.02 228.52 151.40 151.32 3.75 29.16 46.58 45.72
256 1 032 192 212.15 237.02 151.20 151.58 3.47 29.28 54.56 53.14
1024 4 128 768 232.67 250.01 152.29 152.76 4.06 30.56 72.71 63.77

Fig. 14. Weak scaling efficiency for the IP VEF fixed-point solve on the crooked pipe problem. The scalings of the average cost per iteration for the VEF solve 
(which includes assembly, preconditioner setup, and solve) using the USC and USC-S preconditioners are compared. In addition, the scaling of the average 
cost per iteration for the parallel block Jacobi sweep and the scaling of the total runtime are shown. The VEF and parallel block Jacobi sweeps weak scale 
but the total runtime does not due to the use of the parallel block Jacobi sweep which causes the total number of outer iterations to increase with the 
processor count.

in the angular flux on the order of the discretization error. Thus, the first few iterations will have discontinuities in the 
Eddington tensor that increase as more processors are used while the last few iterations will have discontinuities that 
decrease as the discretization error is reduced through mesh refinements. We note that the solve requiring the most inner 
iterations does not occur at the first iteration and thus the maximum inner iterations to convergence deviates from the 
behavior observed in §7.5.2 which only considers the first outer iteration of the problem under consideration in this section.

As observed in §7.5.1, the standard USC method degrades when strong jumps in the Eddington tensor are present. This 
explains the scaling of the maximum number of inner iterations with processors for the standard USC preconditioner: the 
Eddington tensor in the first few outer iterations becomes more discontinuous along processor boundaries leading to higher 
and higher maximum inner iteration counts. However, these discontinuities decrease in magnitude as the iteration converges 
leading to the uniform scaling in minimum and average inner iterations to convergence. The USC-S preconditioner was more 
robust to these discontinuities, having either equivalent or much better convergence as the processor count increased. In 
particular, for the 1024 processor case, USC-S converged in 37% of the iterations that USC did.

Table 14 shows timing data for the inner iteration preconditioned by the two USC methods. The data are averaged across 
all outer iterations. For the USC preconditioner, the preconditioner setup cost includes linear algebra operations that build 
the CG operator without rediscretizing and the setup costs associated with AMG. For USC-S, this cost additionally includes 
forming the symmetrized operator. Due to the symmetrization of the operator, it must be assembled independently from 
the original IP VEF operator, incurring additional assembly costs in the setup phase. Thus, the standard USC preconditioner 
was faster despite the USC-S preconditioner requiring fewer total iterations to converge.

Weak scaling efficiency is plotted in Fig. 14. Here, the VEF costs include assembling the IP VEF operator, setting up the 
preconditioner, and solving the IP VEF system with preconditioned BiCGStab. Note that the efficiencies reported in §7.5.1
and §7.5.2 only considered the costs associated with the BiCGStab iteration and not assembling the operators or constructing 
the preconditioners. The VEF and sweep costs are averaged over the outer iteration. Using the USC-S preconditioner led to 
a VEF cost per iteration that scaled with an efficiency of 49% when 1024 processors were used. For the same number of 
processors, using the USC preconditioner led to a lower efficiency of 45%. This improved scaling is attributed to USC-S’s 
more uniform convergence with respect to processors. While USC-S is more expensive due to its increased assembly costs 
compared to USC, assembly weak scales efficiently, meaning the improved convergence of USC-S leads to better overall weak 
scaling efficiency.
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Table 15
A single-node strong scaling study of the crooked pipe problem with 28 672 elements, S12 angular quadrature, and p = 2. 
A parallel block Jacobi transport sweep was used to approximate the inverse of the streaming and collision operator. The 
IP VEF method was used with the USC preconditioner. Outer refers to the number of fixed-point iterations required to 
converge to a tolerance of 10−6. The maximum, minimum, and average number of USC-preconditioned inner BiCGStab 
iterations required to converge to a tolerance of 10−8 is shown. The parallel block Jacobi sweep’s decreasing accuracy in 
the early stages of the outer iteration as the processor count increases led to an increase in the maximum percentage of 
elements requiring the negative flux fixup as well as an increase in the maximum discontinuity in the Eddington tensor. 
The scaling of the maximum discontinuity in the Eddington tensor induces a scaling of the maximum number of USC-
preconditioned BiCGStab iterations. However, the average inner iterations to convergence is uniform with respect to the 
processor count.

Processors Outer Inner Iterations % Fixed Up Eddington Jump

Max Min Avg. Max Min Max Min

1 47 18 1 8.255 1.36 0.50 1.32 1.38 × 10−2

2 57 25 1 9.368 2.42 0.50 1.40 4.18 × 10−2

4 68 33 1 10.956 6.19 0.61 1.72 7.80 × 10−2

8 76 44 1 11.697 6.43 0.45 1.80 1.17 × 10−1

16 83 42 1 11.072 8.55 0.55 1.89 1.49 × 10−1

32 112 40 1 11.509 10.82 0.42 2.06 1.47 × 10−1

The cost of a single block Jacobi sweep scales well by design from its low communication costs. However, the total 
runtime does not scale due to the increase in outer iterations to convergence as the processor count is increased. We 
stress that this poor scaling is due to the use of a parallel block Jacobi sweep and may be particularly poor due to the 
small number of degrees of freedom per processor used in this study. Although not investigated here, the use of multiple 
parallel block Jacobi sweeps per outer iteration may improve the parallel scaling of the full algorithm. Furthermore, in time-
dependent calculations, the solution at the previous time step can often provide a good initial guess for the parallel block 
Jacobi sweep, especially in the context of multiphysics problems where the time step size is controlled by other, explicitly 
integrated physics components. In such case, the initial error in the parallel block Jacobi sweep is much lower, enabling 
more robust convergence for the outer iteration than observed in this time-independent study.

7.6. Strong scaling

Finally, we present a strong scaling study of the full fixed-point algorithm on the crooked pipe problem from §7.3. The 
problem size was fixed at 28 672 equally sized elements with S12 angular quadrature and p = 2 which corresponded to 
258 048 VEF scalar flux unknowns and 21 676 032 angular flux unknowns. Fixed-point iteration without Anderson accel-
eration is used. The fixed-point tolerance is 10−6 and the inner BiCGStab tolerance is 10−8. The streaming and collision 
operator is approximately inverted using a parallel block Jacobi sweep. Performance is characterized on a single node of the
rztopaz machine.

Table 15 shows the number of outer iterations and the maximum, minimum, and average number of USC-preconditioned 
BiCGStab iterations as well as the maximum and minimum percentage of elements that required the negative flux fixup and 
the maximum and minimum values of ‖ �En̂�‖L2(
0) . Due to the parallel block Jacobi sweep, the outer iteration is not robust 
to increasing processors. The maximum discontinuity in the Eddington tensor increases as the processor count increases 
inducing degradation in the USC preconditioner as indicated by the scaling of the maximum number of inner BiCGStab 
iterations. The average number of iterations is uniform with respect to processor count. The reliance on the negative flux 
fixup in the first few outer iterations increases with processors as well due to the use of the parallel block Jacobi sweep.

Strong scaling speedup, defined equivalently to εn in Eq. (104), is plotted in Fig. 15 for the average cost per iteration 
associated with VEF assembly, the VEF solve, and the parallel block Jacobi sweep along with the total cost of the full 
algorithm. The dashed line represents the ideal speedup of n times faster when n processors are used. VEF assembly and 
the block Jacobi sweep strong scale well due to their low communication costs showing speedups using 32 processors of 
25x and 23x, respectively. The VEF solve requires communication and thus only achieves a 12x speedup when 32 processors 
are used. The full algorithm is primarily hindered by the scaling of the number of outer iterations required to converge as 
the processor count is increased. Overall, the IP VEF method with parallel block Jacobi transport sweep achieved a speedup 
of 10x using 32 processors.

8. Conclusions

We have developed a family of high-order discretizations of the Variable Eddington Factor (VEF) equations that are 
compatible with curved meshes and have efficient preconditioned iterative solvers. When combined with a high-order 
Discontinuous Galerkin (DG) discretization of Discrete Ordinates (SN ) transport, the resulting VEF methods are efficient in 
both outer fixed-point iterations and inner linear iterations on a challenging proxy problem from thermal radiative transfer 
(TRT). We adapted the unified framework for DG methods for elliptic problems presented in [2] to the VEF equations to 
derive analogs of the interior penalty (IP), second method of Bassi and Rebay (BR2), minimal dissipation local Discontinuous 
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Fig. 15. Strong scaling speedup as a function of the number of processors on the crooked pipe problem with 28 672 elements, S12 angular quadrature, 
and p = 2. The average cost per outer fixed-point iteration is shown for assembling and solving the IP VEF linear system of equations and performing the 
parallel block Jacobi transport sweep along with the total runtime cost. The dashed line represents the ideal scaling of εn = n.

Galerkin (MDLDG), and continuous finite element (CG) methods. The uniform subspace correction (USC) preconditioner 
developed by Pazner and Kolev [3], originally designed for DG discretizations of the model Poisson problem, was extended 
to the IP and BR2 VEF systems and shown to be effective leading to iteration counts independent of the mesh size and 
polynomial order. GMRES convergence estimates for the preconditioned system were derived for the non-symmetric VEF 
system of equations under relatively mild assumptions. The MDLDG and CG discretizations were effectively preconditioned 
by Algebraic Multigrid (AMG).

The VEF methods were verified to converge with O(hp+1) on refinements of a third-order mesh using a quadratically 
anisotropic manufactured solution. They were also tested in the thick diffusion limit both on an orthogonal mesh and a 
severely distorted third-order mesh generated with a Lagrangian hydrodynamics code. In both cases, all the VEF meth-
ods preserved the thick diffusion limit and converged robustly. Convergence on the triple point mesh indicates that these 
methods are robust to extreme mesh distortions and inexact transport inversions arising from reentrant faces.

The methods were also tested on a linearized crooked pipe problem. This problem had a 1000x difference in total 
cross section and was designed to emulate the first time step of a time-dependent TRT calculation. Using the stabilized 
bi-conjugate gradient method (BiCGStab), all of the VEF methods were efficiently solvable independent from the mesh 
size, polynomial order, and, if present, penalty parameter. Using a small Anderson space of size two, each VEF algorithm 
converged in a uniform number of outer Anderson-accelerated fixed-point iterations as well. The CG and IP methods were 
the fastest in overall runtime due to their lower assembly and solve costs compared to BR2 and MDLDG. However, we 
note that due to the relative dominance of the cost of the transport sweep, the choice of the VEF discretization led to a 
relative variance of only 10% in total runtime. It was observed that the more numerically diffusive methods, namely the 
IP, BR2, and CG methods, produced scattering sources that led to negativities in the transport sweep more so than for the 
minimally dissipative MDLDG method. This led to fewer elements requiring the application of a negative flux fixup for the 
MDLDG method compared to IP, BR2, and CG. It was also observed that the IP, BR2, and CG methods converged nearly 
identically, indicating that the stabilization terms used by the IP and BR2 methods cause the overall algorithm to behave as 
if a continuous solution representation were used.

The solution from the IP VEF method was compared to a DG SN method preconditioned with Diffusion Synthetic Accel-
eration (DSA) on the thick diffusion limit and crooked pipe problems. Using a fixed angular quadrature rule, the solutions 
from VEF and SN were compared as the mesh was refined. The VEF and SN solutions converged to each other with the 
optimal spatial order of accuracy on the thick diffusion limit problem. However, the two schemes converged to each other 
with only first order accuracy on the multiple material crooked pipe problem. Such behavior may be due to the use of 
a negative flux fixup for the VEF method or due to under resolution in space and/or angle. These comparisons suggest 
that independent VEF methods do in fact converge to the transport solution. However, the first-order convergence in space 
between an independent VEF method and an SN method observed on the multi-material crooked pipe problem should be 
investigated further in order to isolate the cause of the sub-optimal convergence. Ideally, convergence would be compared 
as both the spatial mesh is refined and the SN order is increased and, if possible, in a regime where the spatial mesh is 
resolved enough to not require a negative flux fixup.

Finally, weak and strong scaling studies were performed on the IP VEF method with p = 2. A non-physically difficult 
mock problem with discontinuous VEF data was found to cause non-convergence of the USC-preconditioned linear solver. 
Uniform convergence was recovered by using a symmetrized variant of the USC preconditioner. On the physically realistic 
crooked pipe problem, both the standard USC and the symmetrized USC preconditioners performed well. Solving the non-
symmetric IP VEF system using the symmetrized USC preconditioner on a problem with 43 million scalar flux unknowns 
and 1024 processors was only 12% more expensive than solving the symmetric positive definite linear system corresponding 
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to an IP discretization of radiation diffusion. Furthermore, the IP VEF solvers were shown to have weak scaling efficiency 
out to 1024 processors comparable to that of solving IP radiation diffusion.

Parallel performance was investigated when the IP VEF method was coupled to a parallel block Jacobi transport sweep. 
Such a method performs a transport sweep on each processor domain independently using lagged angular flux information 
on each processor domain’s inflow boundary. Since the streaming and collision operator is not inverted exactly at each 
fixed-point iteration, the number of fixed-point iterations until convergence grew with increasing processor counts, leading 
to poor weak scaling efficiency for the full fixed-point solve. However, the inner IP VEF computations weak scaled efficiently. 
It was observed that use of the parallel block Jacobi sweep led to increased need for the negative flux fixup in the sweep 
and an increase in non-physical discontinuities in the Eddington tensor in the beginning stages of the fixed-point iteration. 
Solver efficiency was mildly improved by using the symmetrized USC preconditioner in place of the standard USC precondi-
tioner which was shown on the problem with mock VEF data to be more robust to discontinuities in the Eddington tensor. 
However, due to the additional assembly costs associated with forming the symmetrized operator, use of the symmetrized 
preconditioner was overall more expensive than the standard USC preconditioner. Similar increases in reliance on the nega-
tive flux fixup and discontinuity in the Eddington tensor due to the parallel block Jacobi sweep were seen on a single-node 
strong scaling study as well. Using the parallel block Jacobi sweep, the full IP VEF algorithm achieved a 10x speedup on 32 
processors.

The primary takeaway from this work is that all of the VEF methods presented here are strong candidates for imple-
mentation in a TRT algorithm. All of the methods were robust to the thick diffusion limit, inexact sweeps from reentrant 
faces, and strongly heterogeneous materials. While the MDLDG method is notable for its reduced reliance on the negative 
flux fixup, the four methods had only minor differences in runtime due to the large expense of the transport sweep relative 
to the cost of forming and inverting the discrete VEF equations. Thus, the methods were primarily differentiated by their 
ease of implementation in forming both the discrete linear system and its associated preconditioner. The CG and IP meth-
ods are the simplest to implement since they do not use the complicated lifting operators needed by the BR2 and MDLDG 
methods. On the other hand, the CG and MDLDG methods are simpler to solve since they only require a black box AMG 
solver whereas IP and BR2 require the additional complications of forming the continuous operator and performing a Jacobi 
iteration on the interfacial unknowns. Thus, the CG method is recommended for its simpler assembly and preconditioning 
requirements compared to the other methods. For solving the IP or BR2 linear system, both the USC and the symmetrized 
USC preconditioner were efficient on realistic problems with the standard USC method typically being the cheaper option 
and the symmetrized method being more robust in terms of iterations to convergence.

In the future, algorithmic aspects associated with extending the methods to the full thermal radiative transfer or radiation 
hydrodynamics problems need to be developed. In particular, it may be interesting to compare the solution quality of the 
four VEF methods on a problem such as the Marshak wave which has a solution with discontinuous derivatives in space. 
Such a problem could expose differences in solution quality not seen in this study, particularly for the CG VEF method 
paired with a DG transport discretization.
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Appendix A. Implementation of lifting operators

Consider the face-local lifting operator ρ f (ω) used in the BR2 stabilization term defined in Eq. (61) with ω = �u� which 
satisfies∫

v · ρ f (�u�)dx = −
∫
f

{{
v · n̂

}} �u� ds , ∀v ∈ W p , on f ∈ 
0 . (A.1)

Let y represent the vector of DOFs corresponding to a Y p or W p grid function y. Let v, w ∈ W p and define

v T Mw =
∫

v · w dx (A.2)

as the W p mass matrix. Further, define

v T A f u = −
∫
f

{{
v · n̂

}} �u� ds , on f ∈ 
0 , (A.3)

for u ∈ Y p . Equation (A.1) is then equivalent to

Mρ
f
(�u�) = A f u ⇐⇒ ρ

f
(�u�) = M−1A f u . (A.4)

Since the W p mass matrix is block diagonal by element, its inverse can be computed and stored without fill-in by simply 
inverting each block individually. The BR2 stabilization term can then be written as∑

f ∈
0

∫
ρ f (�u�) · ρ f (�ϕ�)dx =

∑
f ∈
0

ρ
f
(�u�)T Mρ

f
(�ϕ�)

=
∑
f ∈
0

uT AT
f M−T MM−1A f ϕ

=
∑
f ∈
0

uT AT
f M−1A f ϕ

(A.5)

since M is symmetric. Again, since M−1 is block diagonal by element and the products A f ϕ and uT AT
f are non-zero only on 

DOFs that share the face f , each argument of the sum only contributes to the DOFs that share the face f . Due to this, the 
matrix 

∑
f ∈
0

AT
f M−1A f can be assembled face by face.

Next, consider one part of the LDG stabilization term:∫
ρ0(�u�) · r0(

�
Eϕn̂

�
)dx . (A.6)

Let,

v T Bϕ = −
∫

0

{{v}} · �Eϕn̂
�

ds , (A.7)

and further define the total interaction W p mass matrix as

v T Mt w =
∫

σt v · w dx , (A.8)

so that r0

(�Eϕn̂�)= M−1
t Bϕ . In addition, define

v T Au = −
∫

0

{{
v · n̂

}} �u� ds , (A.9)

such that A =∑
f ∈
0

A f . The LDG stabilization term under consideration is then∫
ρ0(�u�) · r0

(�
Eϕn̂

�)
dx = ρ

0
(�u�)T Mr0

(�
Eϕn̂

�)
= uT AT M−T MM−1

t Bϕ

= uT AT M−1
t Bϕ .

(A.10)

Note that since the matrices A and B are not face-local, this term cannot be assembled locally. The LDG stabilization term 
is instead formed through matrix multiplication as AT M−1

t B.
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