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Background



Motivation

• LLNL purusing high-order DG Sn on curved meshes (Haut et al.,
NSE 2019)

• Raviart-Thomas MFEM successful for radiation diffusion (Maginot
and Brunner, JCTT 2018)

• MFEM successful for VEF in 1D (Olivier and Morel, JCTT 2017)
• Anistratov and Warsa showed consistent and independent

discretizations perform equally well (NSE 2018, JCTT 2018)
• Can VEF be discretized with methods from radiation diffusion?

• VEF discretization would match hydro discretization
• Use established framework for high-order on curved meshes

ψ(~x, Ω̂, ν, t)

3D hydro grid

2D angular grid

1D energy grid

1D time dependence
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Variable Eddington Factor Method/Quasidiffusion

• Robust nonlinear transport algorithm
• Two-level in angle
• Nonlinear projective iteration not additive correction
• Produces two solutions: one from transport, one from solution of

VEF equations
• Consistent Discretization

• Discretized VEF matches discretized transport exactly
• Inconsistent Discretization

• Differ by discretization error
• Acceleration properties the same (if VEF data properly

represented)
• Can match multiphysics discretization

• Flexibility opens door to many new algorithms
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Moment Equations

• Steady-state, mono-energetic, isotropic scattering and source:

Ω̂ · ∇ψ + σtψ = σs
4π

∫
ψ dΩ′ + Q

4π

• Angular moments always have more unknowns than equations

∇ · ~J + σaφ = Q

∇ ·P + σt ~J = 0

with

φ =
∫
ψ dΩ , ~J =

∫
Ω̂ψ dΩ , P =

∫
Ω̂⊗ Ω̂ψ dΩ

• 3D ⇒ 6 + 3 + 1 = 10 unknowns but only 4 equations
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The Philosophy of VEF

• When in doubt, multiply and divide by the scalar flux

P =
∫

Ω̂⊗ Ω̂ψ dΩ→
∫

Ω̂⊗ Ω̂ψ dΩ∫
ψ dΩ︸ ︷︷ ︸
E

φ = Eφ

• VEF equations:
∇ · ~J + σaφ = Q

∇ · (Eφ) + σt ~J = 0

• By contrast, diffusion with tensor coefficient in first order form

∇ · ~J + σaφ = Q

D · ∇φ+ ~J = 0

• VEF has tensor inside divergence ⇒ lots of mixed derivatives,
difficult to discretize
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Linear Transport VEF Algorithm

• Solve

Ω̂ · ∇ψ`+1/2 + σtψ
`+1/2 = σs

4πφ
` + Q

4π

for ψ`+1/2

• Compute Eddington tensor:

E`+1/2 =
∫

Ω̂⊗ Ω̂ψ`+1/2 dΩ∫
ψ`+1/2 dΩ

• Solve VEF equations for updated scalar flux φ`+1

∇ · ~J`+1 + σaφ
`+1 = Q ,

∇ ·
(

E`+1/2φ`+1
)

+ σt ~J
`+1 = 0 .

• Update scattering term directly with VEF solution
• Stop when ‖φ`+1 − φ`‖ < tol

initial guess
for φ0

transport
sweep for
ψ`+1/2

compute
Eddington

tensor

solve VEF
for φ`+1

converged?

use φ`+1

as final
solution

construct
scattering

source

– DG
– MFEM
– Overlap
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Acceleration Properties

• Acceleration occurs because Eddington tensor converges more
rapidly than the scalar flux
• E depends on angular shape not magnitude
• ψ converges quickly in angular shape
• Compensates lagging scattering term
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Sn Discretization



Transport Weak Form

• Multiply by test function u and integrate over a single element∫
κe

u Ω̂ ·∇ψ dV +
∫
κe

σt uψ dV = 1
4π

∫
κe

σs uφ dV + 1
4π

∫
κe

uQdV

• Integrate by parts since ψ is discontinuously approximated∮
∂κe

Ω̂ · n̂ uψ̂ dA−
∫
κe

Ω̂ · ∇uψ dV +
∫
κe

σt uψ dV

= 1
4π

∫
κe

σs uφdV + 1
4π

∫
κe

uQdV

where ψ̂ is the upwind angular flux

Ω̂ · n̂ ψ̂ = 1
2

(
|Ω̂ · n̂|+ Ω̂ · n̂

)
ψe + 1

2

(
|Ω̂ · n̂| − Ω̂ · n̂

)
ψe′

where n̂ points from element e to element e′
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Jumps in Transport

• Shared face between e and e′, sum of boundary terms∮
Γ

Ω̂ · n̂ uψ dA =
∮

Γ
Ω̂ · n̂ ueψe dA︸ ︷︷ ︸
Local outflow

+
∮

Γ
Ω̂ · n̂′ ue′ψe′ dA︸ ︷︷ ︸
Neighbor’s inflow

• Noting that n̂′ = −n̂∮
Γ

Ω̂ · n̂ uψ dA =
∮

Γ
Ω̂ · n̂[ueψe − ue′ψe′ ] dA

• Jumps and averages identity

ueψe − ue′ψe′ = 1
2(ue − ue′)(ψe + ψe′)

+ 1
2(ue + ue′)(ψe − ψe′)

• Since upwinding is used, ψe = ψe′ = ψ̂ for ~x ∈ Γ∮
Γ

Ω̂ · n̂ uψ dA =
∮

Γ
Ω̂ · n̂[ue − ue′ ] ψ̂ dA

• Jump due to discontinuity of test function

n̂

e

e′

Ω̂
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FEM Interpolations

• Let b1 , . . . , bn be a set of Lagrange shape functions
• Interpolate ψ and u with linear combination of shape functions

ψ(~x) =
∑
j

bj(~x)ψj , u(~x) =
∑
i

bi(~x)ui

• Discrete system for each angle

[F + G + Mt]ψ = M̃sφ+ Q

• Get solution as a grid function in each element
• On interior faces, use upwinding ⇒ unique definition on entire

domain

Linear Quadratic Cubic 9/32



Computing VEF Tensor

• Use Sn quadrature and FEM interpolation

E(~x) =
∑
d Ω̂d ⊗ Ω̂d ψd(~x)wd∑

d ψd(~x)wd

=
∑
d Ω̂d ⊗ Ω̂d wd

∑
j bj(~x)ψd,j∑

d wd
∑
j bj(~x)ψd,j

=
∑
j bj(~x)

∑
d Ω̂d ⊗ Ω̂d ψd,jwd∑

j bj(~x)
∑
d ψd,jwd

=
∑
j bj(~x)Pj∑
j bj(~x)φj

• Numerator and denominator are interpolated independently ⇒ E is
an improper rational polynomial in space

• Store the zeroth and second moments at the nodes and interpolate
them independently
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VEF Discretization



Weak Form

• VEF Equations
∇ · ~J + σaφ = Q

∇ · (Eφ) + σt ~J = 0

• Test zeroth moment with scalar test function u and integrate over
entire domain∫

D
u∇ · ~J dV +

∫
D
σa uφ dV =

∫
D
uQdV

• Test first moment with vector-valued test function ~v and integrate
over entire domain∫

D
~v · ∇ · (Eφ) dV +

∫
D
σt ~v · ~J dV = 0
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Required Spaces

• Need all integrals in weak form to be integrable i.e.
∫

(·) dV <∞
• Terms without derivatives are ok since φ , ~J are physical quantities
• E is discontinuous, derivatives on both ~J and φ is needlessly strong
⇒ integrate first moment by parts∫

D
~v · ∇ · (Eφ) dV =

∫
∂D
~v ·E · n̂ φdA−

∫
D
∇~v : EφdV

where

∇~v =
[
∂vx

∂x
∂vx

∂y
∂vy

∂x
∂vy

∂y

]
,

A : B =
∑
i

∑
j

AijBij = A11B11 +A12B12 +A21B21 +A22B22

• Weakens requirements on u, φ, and E
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Required Spaces (cont.)

• Now require that ∫
D
u∇ · ~J dV <∞∫

D
∇~v : Eφ dV <∞

• Galerkin FEM ⇒ u , φ and ~v , ~J lie in the same spaces, respectively
• No derivatives of u or φ required ⇒ seek u , φ ∈ L2(D)

(discontinuous FEM)
• u ∈ L2(D) if

∫
D u

2 dV <∞
• Gradient of ~v ⇒ seek ~v , ~J ∈ ~H1(D) (continuous FEM)

• ~v ∈ ~H1(D) if
∫
D ~v · ~v dV +

∫
D∇~v : ∇~v dV <∞

• H(div) not strong enough ⇒ Raviart-Thomas FEM won’t work
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Comparison to Radiation Diffusion

• Weak form of radiation diffusion in first-order form∫
D
u∇ · ~J dV +

∫
D
σa uφ dV =

∫
D
uQdV∫

∂D
~v · n̂ φdA−

∫
D
∇ · ~v φ dV + 3

∫
σt ~v · ~J dV = 0

• Boundary term on an interior face + jumps and averages∮
Γ
~v · n̂ φdA =

∮
Γ

1
2(~ve · n̂− ~ve′ · n̂)(φe + φe′) dA

+
∮

Γ

1
2(~ve + ~ve′) · n̂(φe − φe′)

• If ~v space chosen such that ~v · n̂ is continuous across element faces,
first term cancels

• If solution is smooth (as expected from an elliptic PDE), then
φe − φe′ ≈ O(hp+1), ignore as consistent error

• Left with no boundary terms on interior faces
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Are there jumps in MFEM VEF?

• VEF boundary term∮
Γ
~v ·E · n̂ φdA =

∮
Γ
~ve ·E · n̂ φe dA−

∮
Γ
~ve′ ·E · n̂ φe′ dA

where E is computed with the upwind angular flux ⇒ both elements
“agree” on value of E

• Jumps and averages:∮
Γ
~v ·E · n̂ φdA =

∮
Γ

1
2(~ve ·E · n̂− ~ve′ ·E · n̂)(φe + φe′) dA

+
∮

Γ

1
2(~ve + ~ve′) ·E · n̂(φe − φe′) dA

• Need the E · n̂ component of ~v to be continuous to cancel first term
• E rotates and scales the normal
• First term cancels for ~H1(D) but not H(div) or H(curl)

• Accept jump in φ as consistent error ⇒ no interior face terms
• Is this true in transport context?
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Initial Try with Raviart-Thomas FEM

Solve VEF with E = 1
3I and a general E

RT not enough when E has off-diagonal components
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Final Weak Form

• Find (φ, ~J) ∈ L2(D)× ~H1(D) with φ|∂D = φ̄ such that∫
D
u∇ · ~J dV +

∫
D
σa uφ dV =

∫
D
uQdV

−
∫
D
∇~v : Eφ dV +

∫
D
σt ~v · ~J dV = −

∫
∂D
~v ·E · n̂ φ̄ dA

holds for all (u,~v) ∈ L2(D)× ~H1(D)
• ~H1(D) + ignoring jump in φ ⇒ no interior face terms
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FEM Interpolation

• Interpolate scalar flux with DG

φ(~x) =
∑
j

Bj(~x)φj , Bj ⊂ L2(D)

• Interpolate each component of the current with continuous FEM

Jd(~x) =
∑
j

Nj(~x)Jd,j , d = x, y, z , Nj ⊂ H1(D)

or in vector notation

~J(~x) =
∑
j

~Nj(~x)Jj , ~Nj ⊂ ~H1(D)

where ~Nj has one component equal to an H1(D) basis function the
rest zero

Linear H1(D) Linear L2(D) 18/32



FEM Interpolation (cont.)

• In MFEM literature, it is common to use one order lower polynomial
bases for the scalar unknown
• φ constant + ~J linear, φ linear + ~J quadratic, etc.
• Qp−1Qp matches DG(p)’s O(hp+1)
• Can match transport order of accuracy with VEF φ one

polynomial order less than ψ
• Mixed form: first moment subject to constraint of zeroth moment

• Want ratio of discrete equations to match 3:1 ratio of
continuous equations

• Found to avoid locking in incompressible solid mechanics
• Not clear if required in this context
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Qp−1Qp Node Placement

DG(p) Transport

p = 1

Qp−1Qp VEF

p = 2
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Discrete System Leads to Non-Symmetric Saddle Point System

[
Mt −G
D Ma

][
J

φ

]
=
[

g
f

]
where

[Mt]ij =
∫
D σt

~Ni · ~Nj dV , [G]ij =
∫
D∇ ~Ni : EBj dV ,

[D]ij =
∫
D Bi∇ · ~Nj dV , [Ma]ij =

∫
D σaBiBj dV ,

[g]i = −
∫
∂D

~Ni ·E · n̂ φ̄ dA , [f ]i =
∫
D BiQdV .

and
G 6= −DT

due to the presence of the Eddington tensor
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Miften-Larsen Transport-Consistent Boundary Conditions

• Manipulate partial currents to get transport consistent inflow current

~J · n̂ = J+
n + J−n

= (J+
n − J−n ) + 2J−n

=
∫
|Ω̂ · n̂|ψ dΩ + 2J−n

=
∫
|Ω̂ · n̂|ψ dΩ∫

ψ dΩ
φ+ 2J−n

= Ebφ+ 2J−n

⇒ φ̄ = 1
Eb

[
~J · n̂− 2J−n

]
• J−n computed from transport boundary conditions
• Adds additional bilinear forms for ~J and φ and a linear form to the

first moment
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Solution Process: Schur Complement

• Since φ is discontinuously approximated, Ma is block-diagonal
• Invert blocks independently ⇒ can directly invert and store

efficiently without fill-in
• Solve zeroth moment for φ

DJ + Maφ = f ⇒ φ = M−1
a [f −DJ ]

• Solve first moment using φ

MtJ −Gφ = g⇒
[
Mt + GM−1

a D
]︸ ︷︷ ︸

S

J = g + GM−1
a Df

• Just need to solve a system of the current unknowns, φ found
through matrix multiplications

• S still non-symmetric, difficult to solve but smaller than original
system

[
Mt −G
D Ma

][
J

φ

]
=
[

g
f

]
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Computing the Scattering Term

• Once φ is known, the transport scattering mass matrix M̃s is
computed as [

M̃s

]
ij

= 1
4π

∫
σsbiBj dV

• Uses interpolations provided by FEM
• M̃sφ forms the scattering source completing a VEF iteration
• This handles using different polynomial orders for ψ and VEF φ

• Equivalent to “direct” mapping in Warsa and Anistratov (JCTT,
2018) when polynomial orders are the same
• Shown to preserve transport’s order of accuracy
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Results



Problem Setup

• Methods implemented in MFEM finite element library
• All integrals performed numerically with appropriate order

Gauss quadrature
• 1 cm × 1 cm box discretized with uniform quadrilaterals
• S8 level symmetric angular quadrature
• Iterative tolerance of 10−10

• Unless otherwise noted:
• Domain is 10 mfp thick with c = 0.99
• Transport solved with p = 2 and Q1Q2 VEF
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VEF Transfer Fast Rate of Converge to Scalar Flux
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Method of Manufactured Solutions

• MMS solution: ψd =
(
1 + µ2

d

)
sin
(
π x+α
L+2α

)
sin
(
π y+α
L+2α

)
• α = 0.1 tests inflow boundary conditions
• Transport: DG(p), VEF: Qp−1Qp, expect O(hp+1)

2−6 2−5 2−4 2−3 2−2 2−1

h

10−5

10−4

10−3

10−2

‖E
xa

ct
−

F
E

M
‖ 2

p = 1

p = 2

p = 3

MFEM VEF maintains transport order of accuracy for smooth problems 27/32



Method of Manufactured Solutions (cont.)
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Scattering Ratio Test

σt = 10 cm−1 , σs = cσt , Q = 1 cm−2 s−1 , p = 2
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Thick Diffusion Limit

σt = 1
ε , σs = 1

ε − ε , Q = ε , p = 2
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Thick Diffusion Limit (cont.)
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Conclusions

• All combinations of VEF polynomial orders:
• Maintained or elevated transport order of accuracy
• Equally accelerated source iteration
• Had the thick diffusion limit

• Future Work
• Efficient iterative solver for VEF system

• MFEM hybdrization is promising
• Leads to non-symmetric, positive-definite system

• Run more realistic problems
• Investigate required quadrature rules for rational

polynomial terms
• Discontinuous solutions to test if jump term needed

• TRT
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